Advertisement

Molecular Neurobiology

, Volume 56, Issue 4, pp 2618–2639 | Cite as

The Role of Deimination in Regenerative Reprogramming of Neurons

  • Di Ding
  • Mabel Enriquez-Algeciras
  • Anddre Osmar Valdivia
  • Juan Torres
  • Cameron Pole
  • John W Thompson
  • Tsung-han Chou
  • Miguel Perez-Pinzon
  • Vittorio Porciatti
  • Susan Udin
  • Eric Nestler
  • Sanjoy K. BhattacharyaEmail author
Article
  • 203 Downloads

Abstract

Neurons from the adult central nervous system (CNS) demonstrate limited mRNA transport and localized protein synthesis versus developing neurons, correlating with lower regenerative capacity. We found that deimination (posttranslational conversion of protein-bound arginine into citrulline) undergoes upregulation during early neuronal development while declining to a low basal level in adults. This modification is associated with neuronal arborization from amphibians to mammals. The mRNA-binding proteins (ANP32a, REF), deiminated in neurons, have been implicated in local protein synthesis. Overexpression of the deiminating cytosolic enzyme peptidyl arginine deiminase 2 in nervous systems results in increased neuronal transport and neurite outgrowth. We further demonstrate that enriching deiminated proteins rescues transport deficiencies both in primary neurons and mouse optic nerve even in the presence of pharmacological transport blockers. We conclude that deimination promotes neuronal outgrowth via enhanced transport and local protein synthesis and represents a new avenue for neuronal regeneration in the adult CNS.

Keywords

Deimination Regeneration Development PAD2 

Notes

Acknowledgments

We thank A. Trzeciecka for providing part of the neurons. We thank G. Gaidosh for assistance with microscopy. We thank Dr. K. Park for the critical comments on the manuscript.

Funding Information

This work was partially supported by an unrestricted grant from Research to Prevent Blindness to the University of Miami, DoD grant W81XWH-16-1-0715, and NIH grants P30 EY014801, EY014957, EY019077, NS034773, and U01EY027257.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1262_MOESM1_ESM.docx (89 kb)
ESM 1 (DOCX 88 kb)
12035_2018_1262_MOESM2_ESM.avi (4.9 mb)
Movie 1 (AVI 5044 kb)
12035_2018_1262_MOESM3_ESM.avi (9.1 mb)
Movie 2 (AVI 9288 kb)

References

  1. 1.
    Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730.  https://doi.org/10.1016/j.cell.2009.01.044 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kim S, Martin KC (2015) Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife 4:4.  https://doi.org/10.7554/eLife.04158 CrossRefGoogle Scholar
  3. 3.
    Kalinski AL, Sachdeva R, Gomes C, Lee SJ, Shah Z, Houle JD, Twiss JL (2015) mRNAs and protein synthetic machinery localize into regenerating spinal cord axons when they are provided a substrate that supports growth. J Neurosci 35(28):10357–10370.  https://doi.org/10.1523/JNEUROSCI.1249-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966.  https://doi.org/10.1126/science.1161566 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480(7377):372–375.  https://doi.org/10.1038/nature10594 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2(3):284–291CrossRefGoogle Scholar
  7. 7.
    Kar AN, MacGibeny MA, Gervasi NM, Gioio AE, Kaplan BB (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33(17):7165–7174.  https://doi.org/10.1523/JNEUROSCI.2040-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Friede RL, Bischhausen R (1980) The fine structure of stumps of transected nerve fibers in subserial sections. J Neurol Sci 44(2–3):181–203CrossRefGoogle Scholar
  9. 9.
    Han SB, Kim H, Skuba A, Tessler A, Ferguson T, Son YJ (2012) Sensory axon regeneration: a review from an in vivo imaging perspective. Experimental Neurobiology 21(3):83–93.  https://doi.org/10.5607/en.2012.21.3.83 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liuzzi FJ, Tedeschi B (1991) Peripheral nerve regeneration. Neurosurg Clin N Am 2(1):31–42CrossRefGoogle Scholar
  11. 11.
    Windle WF (1980) Inhibition of regeneration of severed axons in the spinal cord. Exp Neurol 69(1):209–211CrossRefGoogle Scholar
  12. 12.
    Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–9180.  https://doi.org/10.1523/JNEUROSCI.0612-07.2007 CrossRefPubMedGoogle Scholar
  13. 13.
    Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25(2):331–342.  https://doi.org/10.1523/JNEUROSCI.3073-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25(11):1106–1118.  https://doi.org/10.1002/bies.10357 CrossRefPubMedGoogle Scholar
  15. 15.
    Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H, Crabb JW (2006) Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 47(6):2508–2514CrossRefGoogle Scholar
  16. 16.
    Enriquez-Algeciras M, Ding D, Chou TH, Wang J, Padgett KR, Porciatti V, Bhattacharya SK (2011) Evaluation of a transgenic mice model of multiple sclerosis with non invasive methods. Invest Ophthalmol Vis Sci 52:2405–2411CrossRefGoogle Scholar
  17. 17.
    Bhattacharya SK (2009) Retinal deimination in aging and disease. IUBMB Life 61(5):504–509CrossRefGoogle Scholar
  18. 18.
    Ding D, Enriquez-Algeciras M, Dave KR, Perez-Pinzon M, Bhattacharya SK (2012) The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis. EMBO Rep 13(3):230–236CrossRefGoogle Scholar
  19. 19.
    Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94(1):146–154CrossRefGoogle Scholar
  20. 20.
    Bhattacharya SK, Sinicrope B, Rayborn ME, Hollyfield JG, Bonilha VL (2008) Age-related reduction in retinal deimination levels in the F344BN rat. Aging Cell 7(3):441–444.  https://doi.org/10.1111/j.1474-9726.2008.00376.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Enriquez-Algeciras M, Ding D, Mastronardi FG, Marc RE, Porciatti V, Bhattacharya SK (2013) Deimination restores inner retinal visual function in murine demyelinating disease. J Clin Invest 123(2):646–656PubMedPubMedCentralGoogle Scholar
  22. 22.
    Udin SB (2005) Chronic melatonin and binocular plasticity in Xenopus frogs. Gen Comp Endocrinol 142(3):274–279.  https://doi.org/10.1016/j.ygcen.2005.01.014 CrossRefPubMedGoogle Scholar
  23. 23.
    Udin SB, Fisher MD (1985) The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum. J Comparative Neurology 232(1):25–35.  https://doi.org/10.1002/cne.902320103 CrossRefGoogle Scholar
  24. 24.
    Sim ME, Lyoo IK, Streeter CC, Covell J, Sarid-Segal O, Ciraulo DA, Kim MJ, Kaufman MJ et al (2007) Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology: Official Publication Am College Neuropsychopharmacology 32(10):2229–2237.  https://doi.org/10.1038/sj.npp.1301346 CrossRefGoogle Scholar
  25. 25.
    Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E (2000) TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol 20(23):8996–9008CrossRefGoogle Scholar
  26. 26.
    Khan MZ, Vaidya A, Meucci O (2011) CXCL12-mediated regulation of ANP32A/Lanp, a component of the inhibitor of histone acetyl transferase (INHAT) complex, in cortical neurons. J Neuroimmune Pharmacology : Official J Soc NeuroImmune Pharmacology 6(1):163–170.  https://doi.org/10.1007/s11481-010-9228-5 CrossRefGoogle Scholar
  27. 27.
    Cohen MS, Bas Orth C, Kim HJ, Jeon NL, Jaffrey SR (2011) Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc Natl Acad Sci U S A 108(27):11246–11251.  https://doi.org/10.1073/pnas.1012401108 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Corral-Debrinski M (2007) mRNA specific subcellular localization represents a crucial step for fine-tuning of gene expression in mammalian cells. Biochim Biophys Acta 1773(4):473–475CrossRefGoogle Scholar
  29. 29.
    Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192.  https://doi.org/10.1016/j.cell.2016.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kanai A, Hiruma H, Katakura T, Sase S, Kawakami T, Hoka S (2001) Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons. Anesthesiology 95(3):675–680CrossRefGoogle Scholar
  31. 31.
    LaPointe NE, Morfini G, Brady ST, Feinstein SC, Wilson L, Jordan MA (2013) Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology 37:231–239.  https://doi.org/10.1016/j.neuro.2013.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chou TH, Park KK, Luo X, Porciatti V (2013) Retrograde signaling in the optic nerve is necessary for electrical responsiveness of retinal ganglion cells. Invest Ophthalmol Vis Sci 54(2):1236–1243.  https://doi.org/10.1167/iovs.12-11188 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008) Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci 11(6):721–728.  https://doi.org/10.1038/nn.2118 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36(3):315–324.  https://doi.org/10.1002/jnr.490360309 CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson RS, Roder JC, Riordan JR (1995) Over-expression of the DM-20 myelin proteolipid causes central nervous system demyelination in transgenic mice. J Neurochem 64(3):967–976CrossRefGoogle Scholar
  36. 36.
    Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437(7060):894–897CrossRefGoogle Scholar
  37. 37.
    Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ et al (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489(7414):150–154CrossRefGoogle Scholar
  38. 38.
    Bassell GJ, Kelic S (2004) Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr Opin Neurobiol 14(5):574–581.  https://doi.org/10.1016/j.conb.2004.08.010 CrossRefPubMedGoogle Scholar
  39. 39.
    Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM et al (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18(1):251–265CrossRefGoogle Scholar
  40. 40.
    Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9(12):971–980.  https://doi.org/10.1038/nrm2548 CrossRefPubMedGoogle Scholar
  41. 41.
    Doron-Mandel E, Fainzilber M, Terenzio M (2015) Growth control mechanisms in neuronal regeneration. FEBS Lett 589(14):1669–1677.  https://doi.org/10.1016/j.febslet.2015.04.046 CrossRefPubMedGoogle Scholar
  42. 42.
    Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152CrossRefGoogle Scholar
  43. 43.
    Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27.  https://doi.org/10.1016/j.expneurol.2009.08.011 CrossRefPubMedGoogle Scholar
  44. 44.
    Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol 67(9):1148–1165.  https://doi.org/10.1002/dneu.20515 CrossRefPubMedGoogle Scholar
  45. 45.
    Encalada SE, Goldstein LS (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 43:141–169.  https://doi.org/10.1146/annurev-biophys-051013-022746 CrossRefPubMedGoogle Scholar
  46. 46.
    Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ (2010) Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A 107(11):5196–5201.  https://doi.org/10.1073/pnas.0913141107 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87(2):440–451.  https://doi.org/10.1002/jnr.21850 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koch JC, Bitow F, Haack J, d’Hedouville Z, Zhang JN, Tonges L, Michel U, Oliveira LM et al (2015) Alpha-synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 6:e1811.  https://doi.org/10.1038/cddis.2015.169 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109(1):5–13.  https://doi.org/10.1007/s00401-004-0952-x CrossRefPubMedGoogle Scholar
  50. 50.
    Winans AM, Collins SR, Meyer T (2016) Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation. eLife 5:5.  https://doi.org/10.7554/eLife.12387 CrossRefGoogle Scholar
  51. 51.
    Nieuwkoop PD, Faber J (1967) A normal table of Xenopus laevis (Daudin). 2nd edn. North-Holland Publishing Company, AmsterdamGoogle Scholar
  52. 52.
    Kim EJ, Raval AP, Perez-Pinzon MA (2008) Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab 28(7):1329–1340.  https://doi.org/10.1038/jcbfm.2008.26 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 8(9):e75753.  https://doi.org/10.1371/journal.pone.0075753 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Porciatti V (2007) The mouse pattern electroretinogram. Doc Ophthalmol 115(3):145–153.  https://doi.org/10.1007/s10633-007-9059-8 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Patel N, Solanki E, Picciani R, Cavett V, Caldwell-Busby JA, Bhattacharya SK (2008) Strategies to recover proteins from ocular tissues for proteomics. Proteomics 8(5):1055–1070CrossRefGoogle Scholar
  56. 56.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefGoogle Scholar
  57. 57.
    Aribindi K, Guerra Y, Lee RK, Bhattacharya SK (2013) Comparative phospholipid profiles of control and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 54(4):3037–3044CrossRefGoogle Scholar
  58. 58.
    Crane AM, Hua HU, Coggin AD, Gugiu BG, Lam BL, Bhattacharya SK (2012) Mass spectrometric analyses of phosphatidylcholines in alkali-exposed corneal tissue. Invest Ophthalmol Vis Sci 53(11):7122–7130CrossRefGoogle Scholar
  59. 59.
    Aribindi K, Guerra Y, Piqueras Mdel C, Banta JT, Lee RK, Bhattacharya SK (2013) Cholesterol and glycosphingolipids of human trabecular meshwork and aqueous humor: comparative profiles from control and glaucomatous donors. Curr Eye Res 38(10):1017–1026CrossRefGoogle Scholar
  60. 60.
    Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83(3):940–949.  https://doi.org/10.1021/ac102598u CrossRefPubMedGoogle Scholar
  61. 61.
    Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, Slee E, Lu X et al (2008) RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res 7(11):4982–4991.  https://doi.org/10.1021/pr800373m CrossRefPubMedGoogle Scholar
  62. 62.
    Josef Ruzicka, Kevin J. McHale, David Peake (2014) Data acquisition parameters optimization of quadrupole orbitrap for global lipidomics on LC-MS/MS time frame. Paper presented at the American Society for Mass Spectrometry, Baltimore, MarylandGoogle Scholar
  63. 63.
    Edwards G, Aribindi K, Guerra Y, Lee RK, Bhattacharya SK (2014) Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie 101:232–247.  https://doi.org/10.1016/j.biochi.2014.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2924–2936CrossRefGoogle Scholar
  65. 65.
    Edwards G, Aribindi K, Guerra Y, Bhattacharya SK (2014) Sphingolipids and ceramides of mouse aqueous humor: comparative profiles from normotensive and hypertensive DBA/2J mice. Biochimie 105:99–109.  https://doi.org/10.1016/j.biochi.2014.06.019 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Di Ding
    • 1
    • 2
  • Mabel Enriquez-Algeciras
    • 1
    • 2
  • Anddre Osmar Valdivia
    • 1
    • 2
  • Juan Torres
    • 1
    • 2
  • Cameron Pole
    • 2
  • John W Thompson
    • 3
  • Tsung-han Chou
    • 1
    • 2
  • Miguel Perez-Pinzon
    • 2
    • 4
  • Vittorio Porciatti
    • 1
    • 2
  • Susan Udin
    • 5
  • Eric Nestler
    • 6
  • Sanjoy K. Bhattacharya
    • 1
    • 2
    Email author
  1. 1.Bascom Palmer Eye InstituteUniversity of MiamiMiamiUSA
  2. 2.Department of Ophthalmology/Neuroscience ProgramUniversity of MiamiMiamiUSA
  3. 3.Neurological SurgeryUniversity of MiamiMiamiUSA
  4. 4.Department of NeurologyUniversity of MiamiMiamiUSA
  5. 5.Department of Physiology and BiophysicsState University of New York, BuffaloBuffaloUSA
  6. 6.Fishberg Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations