Advertisement

Molecular Neurobiology

, Volume 56, Issue 4, pp 2314–2327 | Cite as

Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice

  • Zhanyang YuEmail author
  • Li Lin
  • Yinghua Jiang
  • Ian Chin
  • Xiaojie Wang
  • Xiaokun Li
  • Eng H. Lo
  • Xiaoying WangEmail author
Article

Abstract

Blood-brain barrier (BBB) damage is a characteristic feature of diabetes mellitus pathology and plays significant roles in diabetes-associated neurological disorders. However, effective treatments for diabetes targeting BBB damage are yet to be developed. Fibroblast growth factor 21 (FGF21) is a potent regulator of lipid and glucose metabolism. In this study, we tested the hypothesis that recombinant FGF21 (rFGF21) administration may reduce type 2 diabetes (T2D)-induced BBB disruption via NF-E2-related factor-2 (Nrf2) upregulation. Our experimental results show that rFGF21 treatment significantly ameliorated BBB permeability and preserved junction protein expression in db/db mice in vivo. This protective effect was further confirmed by ameliorated transendothelial permeability and junction protein loss by rFGF21 under hyperglycemia and IL1β (HG-IL1β) condition in cultured human brain microvascular endothelial cells (HBMEC) in vitro. We further reveal that rFGF21 can activate FGF receptor 1 (FGFR1) that increases its binding with Kelch ECH-associating protein 1 (Keap1), a repressor of Nrf2, thereby reducing Keap1-Nrf2 interaction leading to Nrf2 release. These data suggest that rFGF21 administration may decrease T2D-induced BBB permeability, at least in part via FGFR1-Keap1-Nrf2 activation pathway. This study may provide an impetus for development of therapeutics targeting BBB damage in diabetes.

Keywords

Fibroblast growth factor 21 (FGF21) Diabetes Blood-brain barrier (BBB) Hyperglycemia Inflammation FGFR1 Nrf2 Keap1 

Abbreviations

FGF21

fibroblast growth factor 21

BBB

blood-brain-barrier

HBMEC

human brain microvascular endothelial cells

FGFR1

FGF receptor 1

IL-1β

interleukin 1β

Nrf2

NF-E2 related factor-2

NaFl

sodium fluorescein

Co-IP

co-immunoprecipitation

Notes

Authors’ Contribution

Z.Y, L.L, I.C, and Y.J performed the study and analyzed the data. Z.Y and XY.W designed the experiment, analyzed the data, and wrote to the paper. X.L, XJ.W, and E.H.L helped in data analysis and paper writing. All authors have read and approved the manuscript.

Funding Information

This study was in part supported by the AHA Scientist Development Grant 15SDG25550035 (Yu Z), and National Institute of Health (NIH) 5R01NS099539 (Wang X).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interests in the manuscript.

Ethics Approval

All animal experiments were performed following protocols approved by the Massachusetts General Hospital Animal Care and Use Committee in compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Supplementary material

12035_2018_1234_MOESM1_ESM.docx (62 kb)
Figure S1 Effect of rFGF21 treatment on blood glucose levels and body weight of db/db mice.db/db diabetic mice at age of 16 weeks were treated with rFGF21 for 10 days, blood glucose levels and body weight were measured before and after treatment. (A) blood glucose level (mg/dL); (B) body weight (grams) (* p < 0.05; n = 6). (DOCX 61 kb)

References

  1. 1.
    Wang DD, Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 6:416–426.  https://doi.org/10.1016/S2213-8587(18)30037-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Bogush M, Heldt NA, Persidsky Y (2017) Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J NeuroImmune Pharmacol 12:593–601.  https://doi.org/10.1007/s11481-017-9752-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Saczynski JS, Siggurdsson S, Jonsson PV, Eiriksdottir G, Olafsdottir E, Kjartansson O, Harris TB, van Buchem MA et al (2009) Glycemic status and brain injury in older individuals: the age gene/environment susceptibility-Reykjavik study. Diabetes Care 32(9):1608–1613.  https://doi.org/10.2337/dc08-2300 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haddad-Tovolli R, Dragano NRV, Ramalho AFS, Velloso LA (2017) Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci 11:224.  https://doi.org/10.3389/fnins.2017.00224 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res 858(2):338–347CrossRefGoogle Scholar
  6. 6.
    Prasad S, Sajja RK, Naik P, Cucullo L (2014) Diabetes mellitus and blood-brain barrier dysfunction: an overview. Aust J Pharm 2(2):125.  https://doi.org/10.4172/2329-6887.1000125 CrossRefGoogle Scholar
  7. 7.
    Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD (2007) Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50(1):202–211.  https://doi.org/10.1007/s00125-006-0485-z CrossRefPubMedGoogle Scholar
  8. 8.
    Acharya NK, Levin EC, Clifford PM, Han M, Tourtellotte R, Chamberlain D, Pollaro M, Coretti NJ et al (2013) Diabetes and hypercholesterolemia increase blood-brain barrier permeability and brain amyloid deposition: beneficial effects of the LpPLA2 inhibitor darapladib. J Alzheimers Dis 35(1):179–198.  https://doi.org/10.3233/JAD-122254 CrossRefPubMedGoogle Scholar
  9. 9.
    Sakata A, Mogi M, Iwanami J, Tsukuda K, Min LJ, Jing F, Ohshima K, Ito M et al (2011) Female type 2 diabetes mellitus mice exhibit severe ischemic brain damage. J Am Soc Hypertens 5(1):7–11.  https://doi.org/10.1016/j.jash.2010.12.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Straub L, Wolfrum C (2015) FGF21, energy expenditure and weight loss - how much brown fat do you need? Mol Metab 4(9):605–609.  https://doi.org/10.1016/j.molmet.2015.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E (2009) Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150(11):4931–4940.  https://doi.org/10.1210/en.2009-0532 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ et al (2012) The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 1:e00065.  https://doi.org/10.7554/eLife.00065 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635.  https://doi.org/10.1172/JCI23606 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I et al (2006) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55(9):2470–2478.  https://doi.org/10.2337/db05-1435 CrossRefPubMedGoogle Scholar
  15. 15.
    Kim HW, Lee JE, Cha JJ, Hyun YY, Kim JE, Lee MH, Song HK, Nam DH et al (2013) Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 154(9):3366–3376.  https://doi.org/10.1210/en.2012-2276 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ et al (2017) FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol 55:4702–4717.  https://doi.org/10.1007/s12035-017-0663-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278(14):12029–12038.  https://doi.org/10.1074/jbc.M211558200 CrossRefPubMedGoogle Scholar
  18. 18.
    Bocci V, Valacchi G (2015) Nrf2 activation as target to implement therapeutic treatments. Front Chem 3:4.  https://doi.org/10.3389/fchem.2015.00004 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kurochkin AV, Chernov BK, Kirpichnikov MP, Kutyshenko VP, Bruskov VI (1989) Complete assignment of signals in 1D and 2D H-NMR spectra of a 17-member oligonucleotide, a model symmetrical analog of lambda operators. Mol Biol (Mosk) 23(1):135–152Google Scholar
  20. 20.
    Cheng X, Siow RC, Mann GE (2011) Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 14(3):469–487.  https://doi.org/10.1089/ars.2010.3283 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu YJ, Chern Y (2015) AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J Neurogenet 29(2–3):50–58.  https://doi.org/10.3109/01677063.2015.1067203 CrossRefPubMedGoogle Scholar
  22. 22.
    Sajja RK, Prasad S, Tang S, Kaisar MA, Cucullo L (2017) Blood-brain barrier disruption in diabetic mice is linked to Nrf2 signaling deficits: role of ABCB10? Neurosci Lett 653:152–158.  https://doi.org/10.1016/j.neulet.2017.05.059 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sajja RK, Green KN, Cucullo L (2015) Altered Nrf2 signaling mediates hypoglycemia-induced blood-brain barrier endothelial dysfunction in vitro. PLoS One 10(3):e0122358.  https://doi.org/10.1371/journal.pone.0122358 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953.  https://doi.org/10.1128/MCB.24.24.10941-10953.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, Lu X, Zhang C (2018) Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 9(2):227.  https://doi.org/10.1038/s41419-018-0307-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, Zhang C, Lu X et al (2016) Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med 93:94–109.  https://doi.org/10.1016/j.freeradbiomed.2016.02.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Lin L, Wang Q, Qian K, Cao Z, Xiao J, Wang X, Li X, Yu Z (2017) bFGF protects against oxygen glucose deprivation/reoxygenation-induced endothelial monolayer permeability via S1PR1-dependent mechanisms. Mol Neurobiol 55:3131–3142.  https://doi.org/10.1007/s12035-017-0544-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein and horseradish peroxidase. Methods Mol Biol 763:369–382.  https://doi.org/10.1007/978-1-61779-191-8_25 CrossRefPubMedGoogle Scholar
  29. 29.
    Stranahan AM, Hao S, Dey A, Yu X, Baban B (2016) Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab 36(12):2108–2121.  https://doi.org/10.1177/0271678X16642233 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hatashita S, Hoff JT (1990) Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 21(4):582–588CrossRefGoogle Scholar
  31. 31.
    Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4(1):e1154641.  https://doi.org/10.1080/21688370.2016.1154641 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu WY, Wang ZB, Zhang LC, Wei X, Li L (2012) Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 18(8):609–615.  https://doi.org/10.1111/j.1755-5949.2012.00340.x CrossRefPubMedGoogle Scholar
  33. 33.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119.  https://doi.org/10.1172/JCI25102 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13(6):465–476.  https://doi.org/10.1038/nrd4275 CrossRefPubMedGoogle Scholar
  35. 35.
    Nguyen PT, Tsunematsu T, Yanagisawa S, Kudo Y, Miyauchi M, Kamata N, Takata T (2013) The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer 109(8):2248–2258.  https://doi.org/10.1038/bjc.2013.550 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhao J, Moore AN, Redell JB, Dash PK (2007) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27(38):10240–10248.  https://doi.org/10.1523/JNEUROSCI.1683-07.2007 CrossRefPubMedGoogle Scholar
  37. 37.
    Chen J, Yu Y, Ji T, Ma R, Chen M, Li G, Li F, Ding Q et al (2016) Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Med 5(10):2678–2687.  https://doi.org/10.1002/cam4.788 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schafer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825–4835.  https://doi.org/10.1038/onc.2012.493 CrossRefPubMedGoogle Scholar
  39. 39.
    Lopez D, Niu G, Huber P, Carter WB (2009) Tumor-induced upregulation of twist, snail, and slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys 482(1–2):77–82.  https://doi.org/10.1016/j.abb.2008.11.016 CrossRefPubMedGoogle Scholar
  40. 40.
    Cheng JC, Chang HM, Leung PC (2013) Transforming growth factor-beta1 inhibits trophoblast cell invasion by inducing Snail-mediated down-regulation of vascular endothelial-cadherin protein. J Biol Chem 288(46):33181–33192.  https://doi.org/10.1074/jbc.M113.488866 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148(2):774–781.  https://doi.org/10.1210/en.2006-1168 CrossRefPubMedGoogle Scholar
  42. 42.
    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12):6018–6027.  https://doi.org/10.1210/en.2008-0816 CrossRefPubMedGoogle Scholar
  43. 43.
    Tu J, Zhang X, Zhu Y, Dai Y, Li N, Yang F, Zhang Q, Brann DW et al (2015) Cell-permeable peptide targeting the Nrf2-Keap1 interaction: a potential novel therapy for global cerebral ischemia. J Neurosci 35(44):14727–14739.  https://doi.org/10.1523/JNEUROSCI.1304-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW et al (2013) The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 33(15):2996–3010.  https://doi.org/10.1128/MCB.00225-13 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang J, Li Y (2015) Fibroblast growth factor 21 analogs for treating metabolic disorders. Front Endocrinol (Lausanne) 6:168.  https://doi.org/10.3389/fendo.2015.00168 CrossRefGoogle Scholar
  46. 46.
    Baribault H (2016) Mouse models of type 2 diabetes mellitus in drug discovery. Methods Mol Biol 1438:153–175.  https://doi.org/10.1007/978-1-4939-3661-8_10 CrossRefPubMedGoogle Scholar
  47. 47.
    Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B 3rd, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 38(8):2499–2511.  https://doi.org/10.1007/s10439-010-0023-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuroprotection Research Laboratory, Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouChina

Personalised recommendations