Molecular Neurobiology

, Volume 56, Issue 4, pp 2559–2578 | Cite as

Misfolded Protein Linked Strategies Toward Biomarker Development for Neurodegenerative Diseases

  • Sundramurthy KumarEmail author
  • Narayanan KarthikeyanEmail author
  • Sachin Mishra
  • Parasuraman PadmanabhanEmail author
  • George Radda
  • Balázs GulyásEmail author


The progressive loss of structure and function of neurons causes various neurodegenerative diseases which need to be examined using measurable indicators, known as biomarkers. Proteins are the building blocks for the cell and are essential as they participate in many processes in the cells. When biologically essential proteins are impaired, it leads to devastating consequences in humans and mammals among which the most prominent is neurodegenerative disease. Proteins conform to three-dimensional structures to enable their functions. Besides, some proteins have the tendency to form self-assembly structures. When these self-assembly proteins assume abnormal conformation, they accumulate and cause pathological conditions. The genetic and molecular origins of protein misfolding in association with their relationship with neurodegeneration and aging are being studied to better understand and develop treatments. Accumulations of these misfolded proteins form aggregates which is considered as the most prominent cause of many neurodegenerative diseases. This article reviews the misfolded proteins in various neurodegenerative diseases and analyzes the diverse aspects of protein misfolding as a potential agent of biomarkers with an approach for finding an inhibitor for misfolding.


Misfolded protein Neurodegenerative diseases Biomarkers Inhibitors 



Author SK, PP, and BG like to acknowledge the support from Lee Kong Chian School of Medicine, Nanyang Technological University Start-Up Grant. KN likes to thank Institute of Bioengineering and Nanotechnology, Singapore, for funding. We would like to thank Ms. Suzanne Danley (Department of Orthopedics, West Virginia University) for editing the manuscript.

Author Contributions

SK, NK, and SM contributed in preparing layout, writing, and editing the manuscript. PP, GR, and BG contributed in reviewing the content. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. 1.
    Munoz V, Cerminara M (2016) When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem J 473:2545–2559. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens KL, Corsmit E et al (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Hum Mutat 27:686–695CrossRefGoogle Scholar
  3. 3.
    Mayeux R, Honig LS, Tang M-X, Manly J, Stern Y, Schupf N et al (2003) Plasma A 40 and A 42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61:1185–1190. CrossRefPubMedGoogle Scholar
  4. 4.
    Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC (2003) Age but not diagnosis is the main predictor of plasma amyloid β-protein levels. Arch Neurol 60:958. CrossRefPubMedGoogle Scholar
  5. 5.
    Sundelöf J, Giedraitis V, Irizarry MC, Sundström J, Ingelsson E, Rönnemaa E et al (2008) Plasma β amyloid and the risk of Alzheimer disease and dementia in elderly men. Arch Neurol 65:256–263. CrossRefPubMedGoogle Scholar
  6. 6.
    Tamaoka A, Fukushima T, Sawamura N, Ishikawa K, Oguni E, Komatsuzaki Y et al (1996) Amyloid β protein in plasma from patients with sporadic Alzheimer’s disease. J Neurol Sci 141:65–68. CrossRefPubMedGoogle Scholar
  7. 7.
    van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM (2006) Plasma Aβ1–40 and Aβ1–42 and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5:655–660. CrossRefPubMedGoogle Scholar
  8. 8.
    Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH et al (2003) Decreased β-amyloid 1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. Jama 289:2094–2103. CrossRefPubMedGoogle Scholar
  9. 9.
    Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362. CrossRefPubMedGoogle Scholar
  10. 10.
    De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. CrossRefPubMedGoogle Scholar
  11. 11.
    Bäckman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive de cits during the transition to Alzheimer’s disease. J Intern Med 256:195–204CrossRefGoogle Scholar
  12. 12.
    Förstl H, Kurz A (1999) Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 249:288–290. CrossRefPubMedGoogle Scholar
  13. 13.
    Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26:7212–7221. CrossRefPubMedGoogle Scholar
  14. 14.
    Turner P, O’Connor K, Tate W, Abraham W (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32. CrossRefPubMedGoogle Scholar
  15. 15.
    Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ (2007) A critical function for betaamyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 27:14459–14469CrossRefGoogle Scholar
  16. 16.
    Hooper NM (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans 33:335–338. CrossRefPubMedGoogle Scholar
  17. 17.
    Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989CrossRefGoogle Scholar
  18. 18.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388. CrossRefPubMedGoogle Scholar
  19. 19.
    Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64:7–10PubMedGoogle Scholar
  20. 20.
    Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 12:25CrossRefGoogle Scholar
  21. 21.
    Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465. CrossRefPubMedGoogle Scholar
  22. 22.
    Goedert M, Spillantini MG, Hasegawa M, Jakes R, Crowther RA, Klug A (1996) Molecular dissection of the neurofibrillary lesions of Alzheimer’s disease. Cold Spring Harb Symp Quant Biol 61:565–573. CrossRefPubMedGoogle Scholar
  23. 23.
    Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27. CrossRefPubMedGoogle Scholar
  24. 24.
    Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kanai Y, Hirokawa N (1995) Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14:421–432CrossRefGoogle Scholar
  26. 26.
    Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C et al (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27:627–633. CrossRefPubMedGoogle Scholar
  27. 27.
    Kim J, Chakrabarty P, Hanna A, March A, Dickson DW, Borchelt DR et al (2013) Normal cognition in transgenic BRI2-Abeta mice. Mol Neurodegener 8:15. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321. CrossRefPubMedGoogle Scholar
  29. 29.
    Giacobini E, Gold G (2013) Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 9:677–686. CrossRefPubMedGoogle Scholar
  30. 30.
    Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ et al (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69:198–207. CrossRefPubMedGoogle Scholar
  31. 31.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. CrossRefPubMedGoogle Scholar
  33. 33.
    Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59. CrossRefPubMedGoogle Scholar
  34. 34.
    Kang J-H (2013) Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 19104:1277–1287. CrossRefGoogle Scholar
  35. 35.
    Polymeropoulos MH (1997) Mutation in the -synuclein gene identified in families with Parkinson’s disease. Science 276(80):2045–2047. CrossRefPubMedGoogle Scholar
  36. 36.
    Bonifati V (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(80):256–259. CrossRefPubMedGoogle Scholar
  37. 37.
    Fahn S, Bressman SB (1984) Should levodopa therapy for parkinsonism be started early or late? Evidence against early treatment. Can J Neurol Sci 11:200–205CrossRefGoogle Scholar
  38. 38.
    Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson's disease: an evidence based assesment. Lancet 2002 4;2009(9317):1589–98CrossRefGoogle Scholar
  39. 39.
    Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 1:225–231CrossRefGoogle Scholar
  40. 40.
    Bjo A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177:555–560CrossRefGoogle Scholar
  41. 41.
    Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647CrossRefGoogle Scholar
  42. 42.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719CrossRefGoogle Scholar
  43. 43.
    Madrazo I, Drucker-Colín R, Díaz V, Martínez-Mata J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316:831–834CrossRefGoogle Scholar
  44. 44.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414CrossRefGoogle Scholar
  45. 45.
    Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2:337–350CrossRefGoogle Scholar
  46. 46.
    Ganat YM, Calder EL, Kriks S, Nelander J, Tu EY, Jia F et al (2012) Identification of embryonic stem cell–derived midbrain dopaminergic neurons for engraftment. J Clin Invest 122:2928–2939CrossRefGoogle Scholar
  47. 47.
    Hedlund E, Pruszak J, Lardaro T, Ludwig W, VInuela ANGEL, Kim KS et al (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 26:1526–1153CrossRefGoogle Scholar
  48. 48.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547CrossRefGoogle Scholar
  49. 49.
    Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665CrossRefGoogle Scholar
  50. 50.
    Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in parkinsonian rats. Proc Natl Acad Sci 107:15921–15926CrossRefGoogle Scholar
  51. 51.
    Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D et al (2015) Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204CrossRefGoogle Scholar
  52. 52.
    Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31:1548–1562CrossRefGoogle Scholar
  53. 53.
    Kelly, E. B (2013) Encyclopedia of human genetics and disease, Volume 1. St. Barbar. Calif Greenwood p, 957Google Scholar
  54. 54.
    Körner S, Petri S, Dengler R, Kollewe K (2011) Amyotrophe lateralsklerose. Nervenheilkunde 30:755–763. CrossRefGoogle Scholar
  55. 55.
    Battistini S, Ricci C, Lotti EM, Benigni M, Gagliardi S, Zucco R et al (2010) Severe familial ALS with a novel exon 4 mutation (L106F) in the SOD1 gene. J Neurol Sci 293:112–115. CrossRefPubMedGoogle Scholar
  56. 56.
    Conwit RA (2006) Preventing familial ALS: a clinical trial may be feasible but is an efficacy trial warranted? J Neurol Sci 251:1–2. CrossRefPubMedGoogle Scholar
  57. 57.
    Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A (2016) Recent advances in amyotrophic lateral sclerosis. J Neurol 263:1241–1254. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hayashi Y, Homma K, Ichijo H (2016) SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul 60:95–104. CrossRefPubMedGoogle Scholar
  59. 59.
    Proctor EA, Fee L, Tao Y, Redler RL, Fay JM, Zhang Y et al (2016) Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci 113:614–619. CrossRefPubMedGoogle Scholar
  60. 60.
    Nance MA, Mathias-Hagen V, Breningstall G, Wick MJ, McGlennen RC (1999) Analysis of a very large trinucleotide repeat in a patient with juvenile Huntington’s disease. Neurology 52:392–392. CrossRefPubMedGoogle Scholar
  61. 61.
    Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930. CrossRefPubMedGoogle Scholar
  62. 62.
    Zuccato C (2001) Loss of Huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(80):493–498. CrossRefPubMedGoogle Scholar
  63. 63.
    DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081. CrossRefPubMedGoogle Scholar
  64. 64.
    Hoffner G, Kahlem P, Djian P (2002) Perinuclear localization of Huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington’s disease. J Cell Sci 115:941–948PubMedGoogle Scholar
  65. 65.
    Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354CrossRefGoogle Scholar
  66. 66.
    Dantuma NP, Lindsten K (2010) Stressing the ubiquitin-proteasome system. Cardiovasc Res 85:263–271CrossRefGoogle Scholar
  67. 67.
    Jung KM, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D (2007) A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol 72:612–621CrossRefGoogle Scholar
  68. 68.
    Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156CrossRefGoogle Scholar
  69. 69.
    Löw K, Aebischer P (2012) Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis 48:189–201CrossRefGoogle Scholar
  70. 70.
    Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181:1426–1435CrossRefGoogle Scholar
  71. 71.
    Tydlacka S, Wang CE, Wang X, Li S, Li XJ (2008) Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 28:13285–13295CrossRefGoogle Scholar
  72. 72.
    Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120CrossRefGoogle Scholar
  73. 73.
    Heiseke A, Aguib Y, Riemer C, Baier M, Schätzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109:25–34CrossRefGoogle Scholar
  74. 74.
    Rodriguez-Navarro JA, Cuervo AM (2010) Autophagy and lipids: tightening the knot. Semin Immunopathol 32:343–353CrossRefGoogle Scholar
  75. 75.
    Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC (2007) A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet 17:170–178CrossRefGoogle Scholar
  76. 76.
    Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-ß levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979CrossRefGoogle Scholar
  77. 77.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013CrossRefGoogle Scholar
  78. 78.
    Guo JL, Lee VMY (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Varkey J, Isas JM, Mizuno N, Jensen MB, Bhatia VK, Jao CC et al (2010) Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J Biol Chem 285:32486–32493. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123. CrossRefPubMedGoogle Scholar
  81. 81.
    Vallabh NA, Romano V, Willoughby CE (2017) Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion 36:103–113. CrossRefPubMedGoogle Scholar
  82. 82.
    Walczak J, Szczepanowska J (2015) Dysfunction of mitochondrial dynamic and distribution in amyotrophic lateral sclerosis. Postepy Biochem 61:183–190PubMedGoogle Scholar
  83. 83.
    Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267CrossRefGoogle Scholar
  84. 84.
    De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173. CrossRefPubMedGoogle Scholar
  85. 85.
    Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:1518–1526. CrossRefGoogle Scholar
  86. 86.
    Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z et al (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24:39–50. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Nassif M, Hetz C (2012) Autophagy impairment: a crossroad between neurodegeneration and tauopathies. BMC Biol 10:78. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–496. CrossRefPubMedGoogle Scholar
  89. 89.
    Israel M a, Yuan SH, Bardy C, Reyna SMS, Mu Y, Herrera C et al (2012) Probing sporadic and familial Alzheimer/’s disease using induced pluripotent stem cells. Nature 482:216–220. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mertens J, Stüber K, Wunderlich P, Ladewig J, Kesavan JC, Vandenberghe R et al (2013) APP processing in human pluripotent stem cell-derived neurons is resistant to NSAID-based γ-secretase modulation. Stem Cell Reports 1:491–498. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539. CrossRefPubMedGoogle Scholar
  92. 92.
    Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in down syndrome. Sci Transl Med 4:124ra29. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6:e26203. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Consortium HDi (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264–278CrossRefGoogle Scholar
  95. 95.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S et al (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253–263. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Almeida S, Zhang Z, Coppola G, Mao W, Futai K, Karydas A et al (2012) Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep 2:789–798. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Chen H, Qian K, Du Z, Cao J, Petersen A, Liu H et al (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14:796–809. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Sareen D, O’Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5:208ra149. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci 109:5803–5808. CrossRefPubMedGoogle Scholar
  101. 101.
    Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I, Jiménez-Delgado S, Caig C, Mora S et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z et al (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3:668. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Byers B, Cord B, Nguyen HN, Schüle B, Fenno L, Lee PC et al (2011) SNCA triplication parkinson’s patient’s iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress. PLoS One 6:e26159. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6:e25255. CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A et al (2011) Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20:2103–2115. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Filiou MD, Turck CW, Martins-de-Souza D (2011) Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 5:38–49CrossRefGoogle Scholar
  110. 110.
    Uhl GR (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 18(Suppl 7):S71–S80CrossRefGoogle Scholar
  111. 111.
    Dhingra V, Gupta M, Andacht T, Fu ZF (2005) New frontiers in proteomics research: a perspective. Int J Pharm 299:1–18CrossRefGoogle Scholar
  112. 112.
    Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24:2894–2900CrossRefGoogle Scholar
  113. 113.
    Chen CH (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36CrossRefGoogle Scholar
  114. 114.
    Guerrera IC, Kleiner O (2005) Application of mass spectrometry in proteomics. Biosci Rep 25:71–93CrossRefGoogle Scholar
  115. 115.
    Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S (2002) Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res 27:1245–1253CrossRefGoogle Scholar
  116. 116.
    Edgar PF, Douglas JE, Knight C, Cooper GJ, Faull RL, Kydd R (1999) Proteome map of the human hippocampus. Hippocampus 9:644–650CrossRefGoogle Scholar
  117. 117.
    Fountoulakis M, Juranville JF, Dierssen M, Lubec G (2002) Proteomic analysis of the fetal brain. Proteomics 2:1547–1576CrossRefGoogle Scholar
  118. 118.
    Langen H, Berndt P, Roder D, Cairns N, Lubec G, Fountoulakis M (1999) Two-dimensional map of human brain proteins. Electrophoresis 20:907–916CrossRefGoogle Scholar
  119. 119.
    Oguri T, Takahata I, Katsuta K, Nomura E, Hidaka M, Inagaki N (2002) Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics 2:666–672CrossRefGoogle Scholar
  120. 120.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefGoogle Scholar
  121. 121.
    Ross PL, Huang YN, Marchese JN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using aminereactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefGoogle Scholar
  122. 122.
    Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B (2017) Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci 4:1600279. CrossRefGoogle Scholar
  123. 123.
    Janeway, C (2001) Immunobiology five. Garland PublishingGoogle Scholar
  124. 124.
    Litman GW, Rast JP, Shamblott MJ, Haire RN, Hulst M, Roess W et al (1993) Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol 10:60–72. CrossRefPubMedGoogle Scholar
  125. 125.
    van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 106:18–23CrossRefGoogle Scholar
  126. 126.
    Hsia AY, Masliah E, McConlogue L, Yu G-Q, Tatsuno G, Hu K et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci 96:3228–3233. CrossRefPubMedGoogle Scholar
  127. 127.
    Ibuki Y, Toyooka T, Goto R (2006) Inhibition of apoptosis by menadione on exposure to UVA. Cell Biol Toxicol 22:351–360. CrossRefPubMedGoogle Scholar
  128. 128.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C et al (1996) Exon I of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506. CrossRefPubMedGoogle Scholar
  129. 129.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421. CrossRefPubMedGoogle Scholar
  130. 130.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. CrossRefPubMedGoogle Scholar
  132. 132.
    Unternaehrer JJ, Daley GQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc B Biol Sci 366:2274–2285. CrossRefGoogle Scholar
  133. 133.
    Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U et al (2011) Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev 20:495–502. CrossRefPubMedGoogle Scholar
  134. 134.
    Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A et al (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577. CrossRefPubMedGoogle Scholar
  135. 135.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789. CrossRefPubMedGoogle Scholar
  136. 136.
    Cuny GD (2012) Neurodegenerative diseases: challenges and opportunities. Future Med Chem 4:1647–1649. CrossRefPubMedGoogle Scholar
  137. 137.
    Hu B, Zhang S (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304. CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L et al (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28:1893–1904. CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C et al (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12:252–264. CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Cruts M, Van Duijn CM, Backhovens H, Van Den Broeck M, Wehnert A, Serneels S et al (1998) Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet 7:43–51. CrossRefPubMedGoogle Scholar
  141. 141.
    Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W, Yu CE et al (2010) Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133:1143–1154. CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Levy-Lahad E, Wasco W, Poorkaj P, Romano D, Oshima J, Pettingell W et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(80):973–977. CrossRefPubMedGoogle Scholar
  143. 143.
    Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760. CrossRefPubMedGoogle Scholar
  144. 144.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23. CrossRefPubMedGoogle Scholar
  145. 145.
    Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC et al (2015) Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16:373–385. CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Nakahara J, Maeda M, Aiso S, Suzuki N (2010) Current concepts in multiple sclerosis. Mult Scler 42:1–10Google Scholar
  147. 147.
    Baranzini SE, Srinivasan R, Khankhanian P, Okuda DT, Nelson SJ, Matthews PM et al (2010) Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain 133:2603–2611. CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184. CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Betarbet R, Sherer TB, Timothy Greenamyre J (2002) Animal models of Parkinson’s disease. BioEssays 24:308–318. CrossRefPubMedGoogle Scholar
  150. 150.
    Ng C-H, Mok SZS, Koh C, Ouyang X, Fivaz ML, Tan E-K et al (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29:11257–11262. CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Schule B, Pera RA, Langston JW (2009) Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta 1792:1043–1051CrossRefGoogle Scholar
  152. 152.
    Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F et al (2013) Identification and rescue of -synuclein toxicity in Parkinson patient-derived neurons. Science 342(80):983–987. CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4:141ra90. CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H et al (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat Commun 2:440. CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52. CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P et al (2011) LRRK2 mutant iPSC-derived da neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280. CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B et al (2014) IPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028. CrossRefPubMedGoogle Scholar
  158. 158.
    Carvajal-Vergara X, Sevilla A, Dsouza SL, Ang YS, Schaniel C, Lee DF et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812. CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Ebert AD, Yu J, Jr Rose FF, Mattis VB, Christian L, Thomson JA et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. NIH Public Access 457:277–280. CrossRefGoogle Scholar
  160. 160.
    Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC et al (2010) Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 7:631–637. CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406. CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392. CrossRefGoogle Scholar
  163. 163.
    Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. Tech Adv 120:3127–3136. CrossRefGoogle Scholar
  164. 164.
    Raya Á, Rodríguez-Piz I, Guenechea G, Vassena R, Navarro S, Barrero MJ et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59. CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C et al (2011) A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45. CrossRefPubMedGoogle Scholar
  166. 166.
    Sproul AA (2015) Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer’s disease models. Mol Asp Med 43–44:54–65. CrossRefGoogle Scholar
  167. 167.
    Lu HF, Lim S-X, Leong MF, Narayanan K, Toh RPK, Gao S et al (2012) Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds. Biomaterials 33:9179–9187. CrossRefPubMedGoogle Scholar
  168. 168.
    Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515:274–278. CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G et al (2009) Adult mice generated from induced pluripotent stem cells. Nature 461:91–94. CrossRefPubMedGoogle Scholar
  170. 170.
    Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci 103:933–938. CrossRefPubMedGoogle Scholar
  171. 171.
    Jiang J, Ding G, Lin J, Zhang M, Shi L, Lv W et al (2011) Different developmental potential of pluripotent stem cells generated by different reprogramming strategies. J Mol Cell Biol 3:197–199. CrossRefPubMedGoogle Scholar
  172. 172.
    Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5:135–138. CrossRefPubMedGoogle Scholar
  173. 173.
    Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47. CrossRefPubMedGoogle Scholar
  174. 174.
    Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855. CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Vaskova EA, Stekleneva AE, Medvedev SP, Zakian SM (2013) “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Nat 5:15–21. CrossRefGoogle Scholar
  176. 176.
    Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J et al (2013) The Presenilin-1 Δ E9 mutation results in reduced γ- -secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5:974–985. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of BiochemistryWest Virginia UniversityMorgantownUSA
  3. 3.Institute of Bioengineering and NanotechnologySingaporeSingapore
  4. 4.Biomedical Research CouncilAgency for Science, Technology and ResearchSingaporeSingapore

Personalised recommendations