Advertisement

Molecular Neurobiology

, Volume 56, Issue 4, pp 2408–2423 | Cite as

Acupuncture Alleviates Levodopa-Induced Dyskinesia via Melanin-Concentrating Hormone in Pitx3-Deficient aphakia and 6-Hydroxydopamine-Lesioned Mice

  • Yu-Kang Kim
  • Ah-Reum Lee
  • Hanseul Park
  • Junsang Yoo
  • Sora Ahn
  • Song-Hee JeonEmail author
  • Jongpil KimEmail author
  • Hi-Joon ParkEmail author
Article

Abstract

Although l-3,4-dihydroxyphenylalanine (L-DOPA) is currently the most effective medication for treating Parkinson’s disease (PD) motor symptoms, its prolonged administration causes several adverse effects, including dyskinesia. To identify the mechanisms underlying the effects of acupuncture on L-DOPA-induced dyskinesia (LID), antidyskinetic effects of acupuncture were investigated in two mouse models of PD. Acupuncture stimulation at GB34 alleviated abnormal involuntary movements (AIMs) in Pitx3-deficient aphakia mice (ak/ak) following L-DOPA administration and these effects were reproduced in 6-hydroxydopamine (6-OHDA)-lesioned mice with LID. A transcriptome analysis of the hypothalamus revealed pro-melanin-concentrating hormone (Pmch) gene was highly expressed in acupuncture-treated mouse from ak/ak model of LID as well as 6-OHDA model of LID. Acupuncture combined with the administration of MCH receptor antagonist did not have any beneficial effects on dyskinesia in L-DOPA-injected ak/ak mice, but the intranasal administration of MCH attenuated LID to the same degree as acupuncture in both ak/ak and 6-OHDA mice with LID. A gene expression profile with a hierarchical clustering analysis of the dyskinesia-induced ak/ak mouse brain revealed an association between the mechanisms underlying acupuncture and MCH. Additionally, altered striatal responses to L-DOPA injection were observed after prolonged acupuncture and MCH treatments, which suggests that these treatment modalities influenced the compensatory mechanisms of LID. In summary, present study demonstrated that acupuncture decreased LID via hypothalamic MCH using L-DOPA-administered ak/ak and 6-OHDA mouse models and that MCH administration resulted in novel antidyskinetic effects in these models. Thus, acupuncture and MCH might be valuable therapeutic candidates for PD patients suffering from LID.

Keywords

Acupuncture Levodopa-induced dyskinesia Melanin-concentrating hormone Pitx3-deficient aphakia mouse Parkinson’s disease 

Notes

Authors’ contributions

HJ Park designed experiment and wrote, edited, and revised the manuscript. J Kim and SH Jeon designed experiment and revised the manuscript. YK Kim, AR Lee, and H Park performed experiments. S Ahn and J Yoo analyzed and interpreted the data. YK Kim, AR Lee, and HJ Park contributed materials and method tools. YK Kim wrote the draft. All authors had input into the manuscript and have approved the manuscript for publication.

Funding Information

This research was supported by grants from the National Research Foundation of Korea funded by the Korean government (NRF-2017R1A2B4009963) and from the Korea Institute of Oriental Medicine (grant K18182).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

ESM 1

(MP4 638 kb)

ESM 2

(MP4 1027 kb)

ESM 3

(MP4 849 kb)

References

  1. 1.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefGoogle Scholar
  2. 2.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653.  https://doi.org/10.1002/mds.23429 CrossRefPubMedGoogle Scholar
  3. 3.
    Phillips JR, Eissa AM, Hewedi DH, Jahanshahi M, El-Gamal M, Keri S, Moustafa AA (2016) Neural substrates and potential treatments for levodopa-induced dyskinesias in Parkinson’s disease. Rev Neurosci 27(7):729–738.  https://doi.org/10.1515/revneuro-2016-0009 CrossRefPubMedGoogle Scholar
  4. 4.
    Hechtner MC, Vogt T, Zollner Y, Schroder S, Sauer JB, Binder H, Singer S, Mikolajczyk R (2014) Quality of life in Parkinson’s disease patients with motor fluctuations and dyskinesias in five European countries. Parkinsonism Relat Disord 20(9):969–974.  https://doi.org/10.1016/j.parkreldis.2014.06.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Vijayakumar D, Jankovic J (2016) Drug-induced dyskinesia, part 1: treatment of levodopa-induced dyskinesia. Drugs 76(7):759–777.  https://doi.org/10.1007/s40265-016-0566-3 CrossRefPubMedGoogle Scholar
  6. 6.
    Kong M, Ba M, Ren C, Yu L, Dong S, Yu G, Liang H (2017) An updated meta-analysis of amantadine for treating dyskinesia in Parkinson’s disease. Oncotarget 8(34):57316–57326.  https://doi.org/10.18632/oncotarget.17622 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yaw TK, Fox SH, Lang AE (2016) Clozapine in parkinsonian rest tremor: a review of outcomes, adverse reactions, and possible mechanisms of action. Mov Disord Clin Pract 3(2):116–124CrossRefGoogle Scholar
  8. 8.
    Chae Y, Lee H, Kim H, Kim CH, Chang DI, Kim KM, Park HJ (2009) Parsing brain activity associated with acupuncture treatment in Parkinson’s diseases. Mov Disord 24(12):1794–1802.  https://doi.org/10.1002/mds.22673 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen FP, Chang CM, Shiu JH, Chiu JH, Wu TP, Yang JL, Kung YY, Chen FJ et al (2015) A clinical study of integrating acupuncture and Western medicine in treating patients with Parkinson’s disease. Am J Chin Med 43(3):407–423.  https://doi.org/10.1142/S0192415X15500263 CrossRefPubMedGoogle Scholar
  10. 10.
    Kim SN, Doo AR, Park JY, Choo HJ, Shim I, Park JJ, Chae Y, Lee B et al (2014) Combined treatment with acupuncture reduces effective dose and alleviates adverse effect of L-dopa by normalizing Parkinson’s disease-induced neurochemical imbalance. Brain Res 1544:33–44.  https://doi.org/10.1016/j.brainres.2013.11.028 CrossRefPubMedGoogle Scholar
  11. 11.
    Kim JH, Choi KH, Jang YJ, Bae SS, Shin BC, Choi BT, Shin HK (2013) Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice. PLoS One 8(2):e56736.  https://doi.org/10.1371/journal.pone.0056736 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li L, Zhang H, Meng SQ, Qian HZ (2014) An updated meta-analysis of the efficacy and safety of acupuncture treatment for cerebral infarction. PLoS One 9(12):e114057.  https://doi.org/10.1371/journal.pone.0114057 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Aroxa FH, Gondim IT, Santos EL, Coriolano MD, Asano AG, Asano NM (2017) Acupuncture as adjuvant therapy for sleep disorders in Parkinson’s disease. J Acupunct Meridian Stud 10(1):33–38.  https://doi.org/10.1016/j.jams.2016.12.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Mizushima T (2011) Treatment results between matched pair of L-dopa medication treatment and acupuncture treatment combination on Parkinson disease—the randomized controlled trial between 2 groups. Kampo Med 62(6):691–694CrossRefGoogle Scholar
  15. 15.
    Wang F, Sun L, Zhang XZ, Jia J, Liu Z, Huang XY, Yu SY, Zuo LJ et al (2015) Effect and potential mechanism of electroacupuncture add-on treatment in patients with Parkinson’s disease. Evid Based Complement Alternat Med 2015:692795.  https://doi.org/10.1155/2015/692795 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim SN, Doo AR, Park JY, Bae H, Chae Y, Shim I, Lee H, Moon W et al (2011) Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of Parkinson’s disease. PLoS One 6(11):e27566.  https://doi.org/10.1371/journal.pone.0027566 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chae Y, Chang DS, Lee SH, Jung WM, Lee IS, Jackson S, Kong J, Lee H et al (2013) Inserting needles into the body: a meta-analysis of brain activity associated with acupuncture needle stimulation. J Pain 14(3):215–222.  https://doi.org/10.1016/j.jpain.2012.11.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Chae Y, Lee H, Kim H, Sohn H, Park JH, Park HJ (2009) The neural substrates of verum acupuncture compared to non-penetrating placebo needle: an fMRI study. Neurosci Lett 450(2):80–84.  https://doi.org/10.1016/j.neulet.2008.11.048 CrossRefPubMedGoogle Scholar
  19. 19.
    Choi GS, Oha SD, Han JB, Bae HS, Cho YW, Yun YS, Lee WK, Ahn HJ et al (2002) Modulation of natural killer cell activity affected by electroacupuncture through lateral hypothalamic area in rats. Neurosci Lett 329(1):1–4CrossRefGoogle Scholar
  20. 20.
    Hsieh JC, Tu CH, Chen FP, Chen MC, Yeh TC, Cheng HC, Wu YT, Liu RS et al (2001) Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett 307(2):105–108CrossRefGoogle Scholar
  21. 21.
    Liu S, Zhou W, Ruan X, Li R, Lee T, Weng X, Hu J, Yang G (2007) Activation of the hypothalamus characterizes the response to acupuncture stimulation in heroin addicts. Neurosci Lett 421(3):203–208.  https://doi.org/10.1016/j.neulet.2007.04.078 CrossRefPubMedGoogle Scholar
  22. 22.
    Takeshige C, Oka K, Mizuno T, Hisamitsu T, Luo CP, Kobori M, Mera H, Fang TQ (1993) The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Brain Res Bull 30(1–2):53–67CrossRefGoogle Scholar
  23. 23.
    Yu Z, Xia Y, Ju C, Shao Q, Mao Z, Gu Y, Xu B (2013) Electroacupuncture regulates glucose-inhibited neurons in treatment of simple obesity. Neural Regen Res 8(9):809–816.  https://doi.org/10.3969/j.issn.1673-5374.2013.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144.  https://doi.org/10.1016/j.freeradbiomed.2013.01.018 CrossRefPubMedGoogle Scholar
  25. 25.
    Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59(4):591–596.  https://doi.org/10.1002/ana.20834 CrossRefPubMedGoogle Scholar
  26. 26.
    Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, Brooks DJ, Reddy AB et al (2016) Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord 31(7):1062–1066.  https://doi.org/10.1002/mds.26592 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pagano G, Molloy S, Bain PG, Rabiner EA, Chaudhuri KR, Brooks DJ, Pavese N (2016) Sleep problems and hypothalamic dopamine D3 receptor availability in Parkinson disease. Neurology 87(23):2451–2456.  https://doi.org/10.1212/WNL.0000000000003396 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Park JY, Kim SN, Yoo J, Jang J, Lee A, Oh JY, Kim H, Oh ST et al (2016) Novel neuroprotective effects of melanin-concentrating hormone in Parkinson’s disease. Mol Neurobiol.  https://doi.org/10.1007/s12035-016-0258-8 CrossRefGoogle Scholar
  29. 29.
    Lim SA, Xia R, Ding Y, Won L, Ray WJ, Hitchcock SA, McGehee DS, Kang UJ (2015) Enhanced histamine H2 excitation of striatal cholinergic interneurons in L-DOPA-induced dyskinesia. Neurobiol Dis 76:67–76.  https://doi.org/10.1016/j.nbd.2015.01.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Santini E, Heiman M, Greengard P, Valjent E, Fisone G (2009) Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal 2(80):ra36.  https://doi.org/10.1126/scisignal.2000308 CrossRefPubMedGoogle Scholar
  31. 31.
    Ding Y, Restrepo J, Won L, Hwang DY, Kim KS, Kang UJ (2007) Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson’s disease. Neurobiol Dis 27(1):11–23.  https://doi.org/10.1016/j.nbd.2007.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Solis O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59.  https://doi.org/10.1016/j.nbd.2014.09.010 CrossRefPubMedGoogle Scholar
  33. 33.
    Lundblad M, Picconi B, Lindgren H, Cenci MA (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16(1):110–123.  https://doi.org/10.1016/j.nbd.2004.01.007 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang X, Wang M, Dong W, Li Y, Zheng X, Piao F, Li S (2013) Subchronic exposure to lead acetate inhibits spermatogenesis and downregulates the expression of Ddx3y in testis of mice. Reprod Toxicol 42:242–250.  https://doi.org/10.1016/j.reprotox.2013.10.003 CrossRefPubMedGoogle Scholar
  35. 35.
    Ahn S, Song TJ, Park SU, Jeon S, Kim J, Oh JY, Jang J, Hong S et al (2017) Effects of a combination treatment of KD5040 and L-dopa in a mouse model of Parkinson’s disease. BMC Complement Altern Med 17(1):220.  https://doi.org/10.1186/s12906-017-1731-2 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Karlsson C, Rehman F, Damdazic R, Atkins AL, Schank JR, Gehlert DR, Steensland P, Thorsell A et al (2016) The melanin-concentrating hormone-1 receptor modulates alcohol-induced reward and DARPP-32 phosphorylation. Psychopharmacology 233(12):2355–2363.  https://doi.org/10.1007/s00213-016-4285-y CrossRefPubMedGoogle Scholar
  37. 37.
    Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17(4):293–298.  https://doi.org/10.1016/j.smrv.2012.10.002 CrossRefPubMedGoogle Scholar
  38. 38.
    Presse F, Conductier G, Rovere C, Nahon JL (2014) The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. Int J Obes Suppl 4(Suppl 1):S31–S36.  https://doi.org/10.1038/ijosup.2014.9 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Della-Zuana O, Presse F, Ortola C, Duhault J, Nahon JL, Levens N (2002) Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. Int J Obes Relat Metab Disord 26(10):1289–1295.  https://doi.org/10.1038/sj.ijo.0802079 CrossRefPubMedGoogle Scholar
  40. 40.
    Monzon ME, de Souza MM, Izquierdo LA, Izquierdo I, Barros DM, de Barioglio SR (1999) Melanin-concentrating hormone (MCH) modifies memory retention in rats. Peptides 20(12):1517–1519CrossRefGoogle Scholar
  41. 41.
    Diniz GB, Bittencourt JC (2017) The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci 11:32.  https://doi.org/10.3389/fnsys.2017.00032 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li N, Nattie E, Li A (2014) The role of melanin concentrating hormone (MCH) in the central chemoreflex: a knockdown study by siRNA in the lateral hypothalamus in rats. PLoS One 9(8):e103585.  https://doi.org/10.1371/journal.pone.0103585 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Serova LI, Laukova M, Alaluf LG, Sabban EL (2013) Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress. Behav Brain Res 250:139–147.  https://doi.org/10.1016/j.bbr.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, Pothos EN, Maratos-Flier E (2008) Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol Psychiatry 64(3):184–191.  https://doi.org/10.1016/j.biopsych.2007.12.011 CrossRefPubMedGoogle Scholar
  45. 45.
    Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci U S A 106(16):6772–6777.  https://doi.org/10.1073/pnas.0811331106 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sandweiss AJ, Vanderah TW (2015) The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst Abuse Rehabil 6:93–102.  https://doi.org/10.2147/SAR.S70350 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Misono K, Lessard A (2012) Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area. Neuroscience 203:27–38.  https://doi.org/10.1016/j.neuroscience.2011.12.018 CrossRefPubMedGoogle Scholar
  48. 48.
    Overton P, Elliott PJ, Hagan RM, Clark D (1992) Neurokinin agonists differentially affect A9 and A10 dopamine cells in the rat. Eur J Pharmacol 213(1):165–166CrossRefGoogle Scholar
  49. 49.
    Zhang X, Andren PE, Chergui K, Svenningsson P (2008) Neurokinin B/NK3 receptors exert feedback inhibition on L-DOPA actions in the 6-OHDA lesion rat model of Parkinson’s disease. Neuropharmacology 54(7):1143–1152.  https://doi.org/10.1016/j.neuropharm.2008.03.005 CrossRefPubMedGoogle Scholar
  50. 50.
    Ferreira AC, Da Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F (2015) From the periphery to the brain: lipocalin-2, a friend or foe? Prog Neurobiol 131:120–136.  https://doi.org/10.1016/j.pneurobio.2015.06.005 CrossRefPubMedGoogle Scholar
  51. 51.
    Kim BW, Jeong KH, Kim JH, Jin M, Lee MG, Choi DK, Won SY, McLean C et al (2016) Pathogenic upregulation of glial lipocalin-2 in the parkinsonian dopaminergic system. J Neurosci 36(20):5608–5622.  https://doi.org/10.1523/JNEUROSCI.4261-15.2016 CrossRefPubMedGoogle Scholar
  52. 52.
    Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, van Leyen K, Lok J et al (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45(7):2085–2092.  https://doi.org/10.1161/STROKEAHA.114.005733 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD (2017) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry.  https://doi.org/10.1038/mp.2016.243 CrossRefGoogle Scholar
  54. 54.
    Vicentic A, Jones DC (2007) The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J Pharmacol Exp Ther 320(2):499–506.  https://doi.org/10.1124/jpet.105.091512 CrossRefPubMedGoogle Scholar
  55. 55.
    Mao P, Meshul CK, Thuillier P, Goldberg NR, Reddy PH (2012) CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria. PLoS One 7(1):e29343.  https://doi.org/10.1371/journal.pone.0029343 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mao P, Meshul CK, Thuillier P, Reddy PH (2013) Neurotransmitter CART as a new therapeutic candidate for Parkinson’s disease. Pharmaceuticals (Basel) 6(1):108–123.  https://doi.org/10.3390/ph6010108 CrossRefGoogle Scholar
  57. 57.
    Upadhya MA, Shelkar GP, Subhedar NK, Kokare DM (2016) CART modulates the effects of levodopa in rat model of Parkinson’s disease. Behav Brain Res 301:262–272.  https://doi.org/10.1016/j.bbr.2015.12.031 CrossRefPubMedGoogle Scholar
  58. 58.
    Park JY, Park JJ, Jeon S, Doo AR, Kim SN, Lee H, Chae Y, Maixner W et al (2014) From peripheral to central: the role of ERK signaling pathway in acupuncture analgesia. J Pain 15(5):535–549.  https://doi.org/10.1016/j.jpain.2014.01.498 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168.  https://doi.org/10.1016/j.pneurobio.2015.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jenner P (2008) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677.  https://doi.org/10.1038/nrn2471 CrossRefPubMedGoogle Scholar
  61. 61.
    Alam M, Rumpel R, Jin X, von Wrangel C, Tschirner SK, Krauss JK, Grothe C, Ratzka A et al (2017) Altered somatosensory cortex neuronal activity in a rat model of Parkinson’s disease and levodopa-induced dyskinesias. Exp Neurol 294:19–31.  https://doi.org/10.1016/j.expneurol.2017.04.011 CrossRefPubMedGoogle Scholar
  62. 62.
    Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bezard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192.  https://doi.org/10.1016/j.nbd.2013.09.020 CrossRefPubMedGoogle Scholar
  63. 63.
    Cerasa A, Koch G, Donzuso G, Mangone G, Morelli M, Brusa L, Stampanoni Bassi M, Ponzo V et al (2015) A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain 138(Pt 2):414–427.  https://doi.org/10.1093/brain/awu329 CrossRefPubMedGoogle Scholar
  64. 64.
    Kokkotou E, Moss AC, Torres D, Karagiannides I, Cheifetz A, Liu S, O’Brien M, Maratos-Flier E et al (2008) Melanin-concentrating hormone as a mediator of intestinal inflammation. Proc Natl Acad Sci U S A 105(30):10613–10618.  https://doi.org/10.1073/pnas.0804536105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nagel JM, Geiger BM, Karagiannis AK, Gras-Miralles B, Horst D, Najarian RM, Ziogas DC, Chen X et al (2012) Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone. PLoS One 7(7):e41914.  https://doi.org/10.1371/journal.pone.0041914 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Karagiannis AK, Ziogas DC, Gras-Miralles B, Geiger BM, Nagel J, Trebicka E, Najarian R, Cherayil BJ et al (2013) Increased susceptibility of melanin-concentrating hormone-deficient mice to infection with Salmonella enterica serovar typhimurium. Infect Immun 81(1):166–172.  https://doi.org/10.1128/IAI.00572-12 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Korean Medical Science, Graduate School of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Integrative Parkinson’s Disease Research Group, Acupuncture & Meridian Science Research CenterKyung Hee UniversitySeoulRepublic of Korea
  3. 3.Department of ChemistryDongguk UniversitySeoulRepublic of Korea
  4. 4.Department of Biomedical Sciences, Center for Creative Biomedical ScientistsChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations