Advertisement

Overexpression of Protein Kinase Inhibitor Alpha Reverses Rat Low Voluntary Running Behavior

  • Kolter B. Grigsby
  • Gregory N. Ruegsegger
  • Thomas E. Childs
  • Frank W. Booth
Article
  • 81 Downloads

Abstract

A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.

Keywords

Behavior Gene Brain Rescue Voluntary running Selective breeding 

Notes

Acknowledgements

The authors would like to thank Dr. Cathleen Kovarik for the generous use of her laboratory. We are also grateful to and would like to acknowledge Dr. Tyler Jacks and Dr. Alexander Dent for their gifting of plasmids used in this study.

Funding

The study was funded by the University of Missouri.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1171_MOESM1_ESM.docx (123 kb)
Supplemental Figure 1 (DOCX 123 kb)

References

  1. 1.
    Lavie CJ, Archer E, Nauman J (2017) Arrival and survival of the fittest. Am Heart J 196:153–155.  https://doi.org/10.1016/j.ahj.2017.08.020. CrossRefPubMedGoogle Scholar
  2. 2.
    Troiano RP, Berrigan D, Dodd KW et al (2008) Physical activity in the United States measured by accelerometer. Med Sci Sport Exerc 40:181–188.  https://doi.org/10.1249/mss.0b013e31815a51b3 CrossRefGoogle Scholar
  3. 3.
    Ruegsegger GN, Booth FW (2017) Health benefits of exercise. Cold Spring Harb Perspect Med:a029694.  https://doi.org/10.1101/cshperspect.a029694 CrossRefGoogle Scholar
  4. 4.
    den Hoed M, Brage S, Zhao JH et al (2013) Heritability of objectively assessed daily physical activity and sedentary behavior. Am J Clin Nutr 98:1317–1325.  https://doi.org/10.3945/ajcn.113.069849 CrossRefGoogle Scholar
  5. 5.
    Roberts MD, Brown JD, Company JM, et al (2013) Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances. AJP Regul Integr Comp Physiol 304:R1024–R1035. doi:  https://doi.org/10.1152/ajpregu.00581.2012 CrossRefGoogle Scholar
  6. 6.
    Ruegsegger GN, Toedebusch RG, Will MJ, Booth FW (2015) Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation. Neuropharmacology 97:171–181.  https://doi.org/10.1016/j.neuropharm.2015.05.022 CrossRefPubMedGoogle Scholar
  7. 7.
    Ruegsegger GN, Brown JD, Kovarik MC, Miller DK, Booth FW (2016) Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 339:525–537.  https://doi.org/10.1016/j.neuroscience.2016.10.020 CrossRefPubMedGoogle Scholar
  8. 8.
    Knab AM, Bowen RS, Hamilton AT, Gulledge AA, Lightfoot JT (2009) Altered dopaminergic profiles: implications for the regulation of voluntary physical activity. Behav Brain Res 204:147–152.  https://doi.org/10.1016/j.bbr.2009.05.034 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knab AM, Lightfoot JT (2010) Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 6:133–150.  https://doi.org/10.7150/ijbs.6.133 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97.  https://doi.org/10.1016/0301-0082(80)90018-0 CrossRefGoogle Scholar
  11. 11.
    Berridge KC (2007) The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 191:391–431.  https://doi.org/10.1007/s00213-006-0578-x CrossRefPubMedGoogle Scholar
  12. 12.
    Brené S, Bjørnebekk A, Åberg E, Mathé AA, Olson L, Werme M (2007) Running is rewarding and antidepressive. Physiol Behav 92:136–140.  https://doi.org/10.1016/j.physbeh.2007.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Greenwood BN, Foley TE, Le TV et al (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217:354–362.  https://doi.org/10.1016/j.bbr.2010.11.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Batty NJ, Fenrich KK, Fouad K (2016) The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 652:1–8.  https://doi.org/10.1016/j.neulet.2016.12.033 CrossRefGoogle Scholar
  15. 15.
    Nestler EJ (2016) Reflections on: “A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function”. Brain Res 1645:71–74.  https://doi.org/10.1016/j.brainres.2015.12.039 CrossRefPubMedGoogle Scholar
  16. 16.
    Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345.  https://doi.org/10.1016/S0149-7634(97)00019-5 CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts MD, Toedebusch RG, Wells KD, Company JM, Brown JD, Cruthirds CL, Heese AJ, Zhu C et al (2014) Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour. J Physiol 592:2119–2135.  https://doi.org/10.1113/jphysiol.2013.268805 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dalton GD, Dewey WL (2006) Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40:23–34.  https://doi.org/10.1016/j.npep.2005.10.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Chen X, Dai JC, Orellana SA, Greenfield EM (2005) Endogenous protein kinase inhibitor γ terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: Termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 280:2700–2707.  https://doi.org/10.1074/jbc.M412558200 CrossRefPubMedGoogle Scholar
  20. 20.
    Gangolli EA, Belyamani M, Muchinsky S, Narula A, Burton KA, McKnight GS, Uhler MD, Idzerda RL (2000) Deficient gene expression in protein kinase inhibitor alpha null mutant mice. Mol Cell Biol 20:3442–3448.  https://doi.org/10.1128/MCB.20.10.3442-3448.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pitts GC (1984) Body composition in the rat: interactions of exercise, age, sex, and diet. Am J Phys 246:R495–R501.  https://doi.org/10.1152/ajpregu.1984.246.4.R495 CrossRefGoogle Scholar
  22. 22.
    Anantharaman-Barr HG, Decombaz J (1989) The effect of wheel running and the estrous cycle on energy expenditure in female rats. Physiol Behav 46:259–263.  https://doi.org/10.1016/0031-9384(89)90265-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Koch LG, Britton SL (2001) Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics 5:45–52CrossRefGoogle Scholar
  24. 24.
    Roberts MD, Gilpin L, Parker KE, Childs TE, Will MJ, Booth FW (2012) Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances. Physiol Behav 105:661–668.  https://doi.org/10.1016/j.physbeh.2011.09.024 CrossRefPubMedGoogle Scholar
  25. 25.
    Hyatt HW, Toedebusch RG, Ruegsegger G, Mobley CB, Fox CD, McGinnis GR, Quindry JC, Booth FW et al (2015) Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity. Physiol Rep 3:e12619.  https://doi.org/10.14814/phy2.12619 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grigsby KB, Kovarik CM, Rottinghaus GE, Booth FW (2018) High and low nightly running behavior associates with nucleus accumbens N-methyl-D-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences. Neurosci Lett 671:50–55.  https://doi.org/10.1016/j.neulet.2018.02.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Swallow JG, Carter PA, Garland T (1998) Artificial selection for increased wheel-running behavior in house mice. Behav Genet 28:227–237.  https://doi.org/10.1023/A:1021479331779 CrossRefPubMedGoogle Scholar
  28. 28.
    Eisenstein SA, Holmes PV (2007) Chronic and voluntary exercise enhances learning of conditioned place preference to morphine in rats. Pharmacol Biochem Behav 86:607–615.  https://doi.org/10.1016/j.pbb.2007.02.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates. Acad Press San Diego 3rd ed:Google Scholar
  30. 30.
    Zachor DA, Moore JF, Brezausek C, Theibert A, Percy AK (2000) Cocaine inhibits NGF-induced PC12 cells differentiation through D1-type dopamine receptors. Brain Res 869:85–97.  https://doi.org/10.1016/S0006-8993(00)02355-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Jang J-H, Surh Y-J (2005) AP-1 mediates beta-amyloid-induced iNOS expression in PC12 cells via the ERK2 and p38 MAPK signaling pathways. Biochem Biophys Res Commun 331:1421–1428.  https://doi.org/10.1016/j.bbrc.2005.04.057 CrossRefPubMedGoogle Scholar
  32. 32.
    Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW (2002) GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283:C545–C551.  https://doi.org/10.1152/ajpcell.00049.2002 CrossRefPubMedGoogle Scholar
  33. 33.
    Machida S, Spangenburg EE, Booth FW (2003) Forkhead transcription factor FoxO1 transduces insulin-like growth factor’s signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196:523–531.  https://doi.org/10.1002/jcp.10339 CrossRefPubMedGoogle Scholar
  34. 34.
    Vasanwala FH, Kusam S, Toney LM, Dent AL (2002) Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 169:1922–1929.  https://doi.org/10.4049/jimmunol.169.4.1922 CrossRefPubMedGoogle Scholar
  35. 35.
    Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-B signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107.  https://doi.org/10.1038/nature08462 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoffmann HM, Nadal R, Vignes M, Ortiz J (2012) Chronic cocaine self-administration modulates ERK1/2 and CREB responses to dopamine receptor agonists in striatal slices. Addict Biol 17:565–575.  https://doi.org/10.1111/j.1369-1600.2011.00353.x CrossRefPubMedGoogle Scholar
  37. 37.
    Whishaw IQ, Cioe JDD, Previsich N, Kolb B (1977) The variability of the interaural line vs the stability of bregma in rat stereotaxic surgery. Physiol Behav 19:719–722.  https://doi.org/10.1016/0031-9384(77)90304-3 CrossRefPubMedGoogle Scholar
  38. 38.
    Rhodes JS, Garland T (2003) Differential sensitivity to acute administration of Ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 167:242–250.  https://doi.org/10.1007/s00213-003-1399-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Will MJ, Franzblau EB, Kelley AE (2004) The amygdala is critical for opioid-mediated binge eating of fat. Neuroreport 15:1857–1860.  https://doi.org/10.1097/00001756-200408260-00004 CrossRefPubMedGoogle Scholar
  40. 40.
    Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742. doi: 20/20/7737 [pii]Google Scholar
  41. 41.
    Ruegsegger GN, Grigsby KB, Kelty TJ, Zidon TM, Childs TE, Vieira-Potter VJ, Klinkebiel DL, Matheny M et al (2017) Maternal western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression. FASEB J 31:5371–5383.  https://doi.org/10.1096/fj.201700389R CrossRefPubMedGoogle Scholar
  42. 42.
    Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534.  https://doi.org/10.1016/S0149-7634(05)80194-0 CrossRefPubMedGoogle Scholar
  43. 43.
    Rygula R, Abumaria N, Flügge G, Fuchs E, Rüther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162:127–134.  https://doi.org/10.1016/j.bbr.2005.03.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward. Topics in experimental psychopharmacology. pp 264–319.Google Scholar
  45. 45.
    Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56:139–148.  https://doi.org/10.1016/j.neuropharm.2008.06.027 CrossRefPubMedGoogle Scholar
  46. 46.
    Adami ANDREOLLO N, Freitas dos SANTOS E, Rachel ARAÚJO M, et al (2012) Rat’s age versus human’s age: what is the relationship? ABCD Arq Bras Cir Dig 25:49–51 . doi:  https://doi.org/10.1590/S0102-67202012000100011 CrossRefGoogle Scholar
  47. 47.
    De Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296.  https://doi.org/10.1007/s12035-012-8293-6 CrossRefPubMedGoogle Scholar
  48. 48.
    Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11.  https://doi.org/10.3389/fnbeh.2017.00035
  49. 49.
    Girault JA (2012) Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Prog Mol Biol Transl Sci 106:33–62. doi:  https://doi.org/10.1016/B978-0-12-396456-4.00006-7 Google Scholar
  50. 50.
    Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG (2017) Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev 97:1351–1402.  https://doi.org/10.1152/physrev.00019.2016 CrossRefPubMedGoogle Scholar
  51. 51.
    Hill WF (1961) Effects of activity deprivation on choice of an activity incentive. J Comp Physiol Psychol 54:78–82.  https://doi.org/10.1037/h0043817 CrossRefPubMedGoogle Scholar
  52. 52.
    Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77.  https://doi.org/10.1016/j.tins.2011.11.005 CrossRefPubMedGoogle Scholar
  53. 53.
    Belke TW, Wagner JP (2005) The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms. Behav Process 68:165–172.  https://doi.org/10.1016/j.beproc.2004.12.006 CrossRefGoogle Scholar
  54. 54.
    Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413.  https://doi.org/10.1176/appi.ajp.162.8.1403 CrossRefGoogle Scholar
  55. 55.
    Self DW, Genova LM, Hope BT et al (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859.  https://doi.org/10.1523/JNEUROSCI.18-05-01848.1998 CrossRefPubMedGoogle Scholar
  56. 56.
    Carlezon WA, Thome J, Olson VG, et al (1998) Regulation of cocaine reward by CREB. Science (80- ) 282:2272–2275. doi:  https://doi.org/10.1126/science.282.5397.2272 CrossRefGoogle Scholar
  57. 57.
    Barrot M, Olivier JDA, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci 99:11435–11440.  https://doi.org/10.1073/pnas.172091899 CrossRefPubMedGoogle Scholar
  58. 58.
    Alleweireldt AT, Kirschner KF, Blake CB, Neisewander JL (2003) D1-receptor drugs and cocaine-seeking behavior: investigation of receptor mediation and behavioral disruption in rats. Psychopharmacology 168:109–117.  https://doi.org/10.1007/s00213-002-1305-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of MissouriColumbiaUSA
  2. 2.Division of Endocrinology, Diabetes and NutritionMayo ClinicRochesterUSA
  3. 3.Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaUSA
  4. 4.Department of PhysiologyUniversity of MissouriColumbiaUSA
  5. 5.Dalton Cardiovascular CenterUniversity of MissouriColumbiaUSA

Personalised recommendations