Beneficial Effects of the Calcium Channel Blocker CTK 01512-2 in a Mouse Model of Multiple Sclerosis

  • Rodrigo B. M. Silva
  • Samuel Greggio
  • Gianina T. Venturin
  • Jaderson C. da Costa
  • Marcus V. Gomez
  • Maria M. Campos
Article
  • 81 Downloads

Abstract

Voltage-gated calcium channels (VGCCs) play a critical role in neuroinflammatory diseases, such as multiple sclerosis (MS). CTK 01512-2 is a recombinant version of the peptide Phα1β derived from the spider Phoneutria nigriventer, which inhibits N-type VGCC/TRPA1-mediated calcium influx. We investigated the effects of this molecule in the mouse model of experimental autoimmune encephalomyelitis (EAE). The effects of CTK 01512-2 were compared to those displayed by ziconotide—a selective N-type VGCC blocker clinically used for chronic pain—and fingolimod—a drug employed for MS treatment. The intrathecal (i.t.) treatment with CTK 01512-2 displayed beneficial effects, by preventing nociception, body weight loss, splenomegaly, MS-like clinical and neurological scores, impaired motor coordination, and memory deficits, with an efficacy comparable to that observed for ziconotide and fingolimod. This molecule displayed a favorable profile on EAE-induced neuroinflammatory changes, including inflammatory infiltrate, demyelination, pro-inflammatory cytokine production, glial activation, and glucose metabolism in the brain and spinal cord. The recovery of spatial memory, besides a reduction of serum leptin levels, allied to central and peripheral elevation of the anti-inflammatory cytokine IL-10, was solely modulated by CTK 01512-2, dosed intrathecally. The intravenous (i.v.) administration of CTK 01512-2 also reduced the EAE-elicited MS-like symptoms, similarly to that seen in animals that received fingolimod orally. Ziconotide lacked any significant effect when dosed by i.v. route. Our results indicate that CTK 01512-2 greatly improved the neuroinflammatory responses in a mouse model of MS, with a higher efficacy when compared to ziconotide, pointing out this molecule as a promising adjuvant for MS management.

Keywords

Multiple sclerosis Neuroinflammation CTK 01512-2 Calcium signaling Ziconotide Fingolimod 

Notes

Acknowledgments

We would like to thank Janaína Pasetti Nunes for her valuable technical assistance in histological processing.

Compliance with Ethical Standards

All animal experimental procedures complied with the National Institutes of Health Animal Care Guidelines (NIH publications n° 80-23), and were approved by the Animal Ethics Committee of the Pontifical Catholic University of Rio Grande do Sul (PUCRS, Porto Alegre, Brazil) (protocol number 14/00424).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1049_Fig11_ESM.gif (72 kb)
Supplementary fig. 1

Experimental design phase 1 (A) and phase 2 (B) for the experimental autoimmune encephalomyelitis (EAE) evoked by MOG35-55 in female C57/BL6 mice. Representative scheme (A and B) shows the EAE induction during 25 days as well as the respective days of treatment with vehicle, CTK 01512-2, ziconotide and fingolimod. In experimental design phase 1 shows the behavioral studies performed as von Frey hairs, hot-plate test, clinical score, neurological severity score and body weight during EAE model. In phase 2, the behavioral tests evaluated were object location test, clinical score, neurological severity score, rotarod and body weight. (GIF 71.6 KB)

12035_2018_1049_MOESM1_ESM.tif (913 kb)
High Resolution Image (TIFF 913 kb)
12035_2018_1049_Fig12_ESM.gif (97 kb)
Supplementary fig. 2

Body weight (gain/loss) was assessed during 25 days after subcutaneous administration of MOG35-55. Effects of treatment with CTK 01512-2, ziconotide (Zico) (25, 50, or 100 pmol/site, dosed at days 4, 10, 15, 20 and 24 post-MOG35-55), by intrathecal (i.t.) route, or fingolimod (0.3 mg/kg, dosed once a day, beginning 7 days after the first MOG35-55 injection), by oral route (p.o.), on body weight (gain/loss) (A) at day 5 (B), day 10 (C), day 15 (D), day 20 (E) and day 25 (F) in the model of MOG35-55-evoked experimental autoimmune encephalomyelitis (EAE) in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the gain and weight loss was determined by one-way analysis of variance, followed by Newman-Keuls post hoc test. Each column represents the mean and the vertical lines show the standard error mean. The experimental N of each group is provided in the graph A. #p < 0.05, ##p < 0.01 and ###p < 0.001 significantly different from naive values. **p < 0.01 and ***p < 0.001. MOG = myelin oligodendrocyte glycoprotein. (GIF 97.1 KB)

12035_2018_1049_MOESM2_ESM.tif (1.5 mb)
High Resolution Image (TIFF 1.50 MB)
12035_2018_1049_Fig13_ESM.gif (85 kb)
Supplementary fig. 3

Cytokine production was measured by ELISA in spleen on day 25 day after MOG35-55 elicited multiple sclerosis in mice. Effects of treatment with CTK 01512-2, ziconotide (Zico) (50 pmol/site, dosed at days 4, 10, 15, 20 and 24 days post-MOG35-55), by intrathecal (i.t.) route, or fingolimod (0.3 mg/kg, dosed once a day, beginning 7 days after the first MOG35-55 injection), by oral route (p.o), on production of TNF (A), IL-1β (B), IFN-γ (C), IL-17 (D), IL-23 (E), CCL3 (F) and IL-10 (G) in the model of MOG35-55-evoked experimental autoimmune encephalomyelitis (EAE) in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the cytokine formation was determined by one-way analysis of variance, followed by Newman-Keuls post hoc test. Each column represents the mean and the vertical lines show the standard error mean. The experimental N of each group is provided in the graphs (A-G). #p < 0.05, ##p < 0.01 and ###p < 0.001 significantly different from naive values. *p < 0.05, **p < 0.01 and ***p < 0.001 significantly different from vehicle values. $p < 0.05 and $$p < 0.01 and significantly different from ziconotide values. CCL3 = chemokine (C-C motif) ligand 3; CFA = complete Freund’s adjuvant; IFN-γ = interferon-gamma; IL = interleukin; MOG = myelin oligodendrocyte glycoprotein; PBS = phosphate-buffered saline; PTX = Pertussis toxin; TNF = tumor necrosis factor; Veh = vehicle. (GIF 85.4 KB)

12035_2018_1049_MOESM3_ESM.tif (1.5 mb)
High Resolution Image (TIFF 1.49 MB)
12035_2018_1049_Fig14_ESM.gif (55 kb)
Supplementary fig. 4

Cytokine activity was evaluated 25 days after subcutaneous application of MOG35-55 in serum. Effects of treatment with CTK 01512-2, ziconotide (Zico) (50 pmol/site, dosed at days 4, 10, 15, 20 and 24 days post-MOG35-55), by intrathecal (i.t.) route, or fingolimod (0.3 mg/kg, dosed once a day, beginning 7 days after the first MOG35-55 injection), by oral route (p.o), on production of TNF (A), IL-1β (B), IFN-γ (C), IL-17 (D), IL-23 (E), CCL3 (F) and IL-10 (G) in the model of MOG35-55-evoked experimental autoimmune encephalomyelitis (EAE) in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the cytokine production was determined by one-way analysis of variance, followed by Newman-Keuls post hoc test. Each column represents the mean and the vertical lines show the standard error mean. The experimental N of each group is provided in the graphs (A-G). #p < 0.05 significantly different from naive values. **p < 0.01 significantly different from vehicle values. CCL3 = chemokine (C-C motif) ligand 3; CFA = complete Freund’s adjuvant; IFN-γ = interferon-gamma; IL = interleukin; MOG = myelin oligodendrocyte glycoprotein; PBS = phosphate-buffered saline; PTX = Pertussis toxin; TNF = tumor necrosis factor; Veh = vehicle. (GIF 54.6 KB)

12035_2018_1049_MOESM4_ESM.tif (608 kb)
High Resolution Image (TIFF 607 KB)
12035_2018_1049_Fig15_ESM.gif (868 kb)
Supplementary fig. 5

Effects of treatment with CTK 01512-2, ziconotide (Zico) (50 pmol/site, dosed at days 4, 10, 15, 20 and 24 days post-MOG35-55), by intrathecal (i.t.) route, or fingolimod (0.3 mg/kg, dosed once a day, beginning 7 days after the first MOG35-55 injection), by oral route (p.o), on the representative images of hematoxylin-eosin (HE, inflammation) staining (A), luxol fast blue (LFB, demyelination) staining (B), immunohistochemical for glial fibrillary acidic protein (GFAP, astrocytic marker) (C) and ionized-binding adapter molecule 1 (Iba1, microgila marker) (D) in the model of MOG35-55-evoked EAE in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Dotted rectangles demonstrate the accumulation of inflammatory infiltrate and red arrows indicate the immunopositivity in brain (cerebral cortex). The images were captured in ×100 magnification. Scale bar = 50 μm. (GIF 867 kb)

12035_2018_1049_MOESM5_ESM.tif (17.1 mb)
High Resolution Image (TIFF 17.1 MB)
12035_2018_1049_Fig16_ESM.gif (170 kb)
Supplementary fig. 6

Effects of treatment with CTK 01512-2, ziconotide (Zico) (50 pmol/site, dosed at days 4, 10, 15, 20 and 24 days post-MOG35-55), by intrathecal (i.t.) route, or fingolimod (0.3 mg/kg, dosed once a day, beginning 7 days after the first MOG35-55 injection), by oral route (p.o), on [18F]-FDG metabolism of the following brain regions: thalamus (A), hypothalamus (B), superior colliculi (C), inferior colliculi (D), midbrain (E) and cingulate cortex in the model of MOG35-55-evoked experimental autoimmune encephalomyelitis (EAE) in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the standardized uptake value (SUV) was determined by two-way analysis of variance. Each column represents the mean and the vertical lines show the standard error mean. The experimental N of each group is provided in the graphs (A-F). #p < 0.05, ##p < 0.01 and ###p < 0.001 significantly different from naive values. *p < 0.05, **p < 0.01 and ***p < 0.001 significantly different from vehicle values. $p < 0.05 significantly different from ziconotide values. (GIF 170 kb)

12035_2018_1049_MOESM6_ESM.tif (3.2 mb)
High Resolution Image (TIFF 3.18 MB)
12035_2018_1049_Fig17_ESM.gif (161 kb)
Supplementary fig. 7

Recombinant peptide CTK 01512-2 treatment prevents MOG35-55-evoked activity loss in mice. Effects of treatment with CTK 01512-2 (CTK), ziconotide (Zico) (0,2 mg/kg, every 3 days, starting on day 7, after the first MOG35-55 injection), by intravenous (i.v.) route, or fingolimod (Fingo, 0.3 mg/kg, once a day, beginning 7 days post-MOG35-55 application) by oral route (p.o.), on the ambulatory movement (A), traveled distance (B) and speed (C) in the model of experimental autoimmune encephalomyelitis (EAE)-affected mice. Representative images of the mouse movements (D) through the arena, 23 days after MOG35-55 application according to the respective treatments. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the behavioral tests were determined by one-way analysis of variance, followed by Newman-Keuls post hoc test. Each point represents the mean and the vertical lines show the standard error mean. The experimental N of each group is described in the graphs (A-C). #p < 0.05 and ##p < 0.01 significantly different from naive values. *p < 0.05 significantly different from vehicle values. B = baseline; CFA = complete Freund’s adjuvant; MOG = myelin oligodendrocyte glycoprotein; PBS = phosphate-buffered saline; PTX = Pertussis toxin; Veh = vehicle. (GIF 161 kb)

12035_2018_1049_MOESM7_ESM.tif (3.8 mb)
High Resolution Image (TIFF 3.83 MB)
12035_2018_1049_Fig18_ESM.gif (85 kb)
Supplementary fig. 8

Effects of treatment with CTK 01512-2 (CTK), ziconotide (Zico) (0,2 mg/kg, every 3 days, starting on day 7, after first MOG35-55 injection), given by intravenous (i.v.) route, or fingolimod (Fingo, 0.3 mg/kg, once a day, beginning 7 days post-MOG35-55 application) given by oral route (p.o.), on the thermal nociception (A), body weight (gain/loss) (B) and spleen wet weight (C) in the model of MOG35-55-caused experimental autoimmune encephalomyelitis (EAE) in C57/BL6 mice. Fingolimod was used as a positive control drug for multiple sclerosis treatment. Differences in the hot-plate test, body and spleen weight were determined by one-way analysis of variance, followed by Newman-Keuls or Bonferroni post hoc test. Each point represents the mean and the vertical lines show the standard error mean. The experimental N of each group is described in the graphs (A-C). ##p < 0.01 and ###p < 0.001 significantly different from naive values. **p < 0.01 and ***p < 0.001 significantly different from vehicle values. $$p < 0.01 and $$$p < 0.001 significantly different from ziconotide values. B = baseline; CFA = complete Freund’s adjuvant; MOG = myelin oligodendrocyte glycoprotein; PBS = phosphate-buffered saline; PTX = Pertussis toxin; Veh = vehicle. (GIF 85.2 KB)

12035_2018_1049_MOESM8_ESM.tif (1.1 mb)
High Resolution Image (TIFF 1088 kb)
12035_2018_1049_MOESM9_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 14.6 KB)
12035_2018_1049_MOESM10_ESM.mp4 (4.3 mb)
Supplementary video 1 (MP4 4.30 MB)
12035_2018_1049_MOESM11_ESM.mp4 (4.5 mb)
Supplementary video 2 (MP4 4.46 MB)
12035_2018_1049_MOESM12_ESM.mp4 (4.4 mb)
Supplementary video 3 (MP4 4.41 MB)

References

  1. 1.
    Bergantin LB, Caricati-Neto A (2016) Challenges for the pharmacological treatment of neurological and psychiatric disorders: implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur J Pharmacol 788:255–260.  https://doi.org/10.1016/j.ejphar.2016.06.034 CrossRefPubMedGoogle Scholar
  2. 2.
    Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, Gould TD (2012) CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99(1):1–14.  https://doi.org/10.1016/j.pneurobio.2012.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zamponi GW (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15(1):19–34.  https://doi.org/10.1038/nrd.2015.5 CrossRefPubMedGoogle Scholar
  4. 4.
    Bourinet E, Zamponi GW (2016) Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology 127:109–115.  https://doi.org/10.1016/j.neuropharm.2016.10.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Jones BL, Smith SM (2016) Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons. Front Physiol 7:116.  https://doi.org/10.3389/fphys.2016.00116 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Chakroborty S, Stutzmann GE (2014) Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 739:83–95.  https://doi.org/10.1016/j.ejphar.2013.11.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Felix R (2006) Calcium channelopathies. NeuroMolecular Med 8(3):307–318.  https://doi.org/10.1385/NMM:8:3:307 CrossRefPubMedGoogle Scholar
  8. 8.
    Fairless R, Williams SK, Diem R (2014) Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 357(2):455–462.  https://doi.org/10.1007/s00441-013-1758-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Crockett AM, Adzovic L, Wenk GL (2015) Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation. J Neuroinflammation 12:56.  https://doi.org/10.1186/s12974-015-0262-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang BR, Chang PC, Yeh WL, Lee CH, Tsai CF, Lin C, Lin HY, Liu YS et al (2014) Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: implications for neuroprotection. PLoS One 9(3):e91167.  https://doi.org/10.1371/journal.pone.0091167 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):25–36 doi:nrneurol.2016.187CrossRefPubMedGoogle Scholar
  12. 12.
    Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G, Sormani MP, Thalheim C et al (2016) Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord 9(Suppl 1):S5–S48.  https://doi.org/10.1016/j.msard.2016.07.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Dendrou CA, McVean G, Fugger L (2016) Neuroinflammation—using big data to inform clinical practice. Nat Rev Neurol 12(12):685–698.  https://doi.org/10.1038/nrneurol.2016.171 CrossRefPubMedGoogle Scholar
  14. 14.
    Farjam M, Zhang GX, Ciric B, Rostami A (2015) Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 358(1–2):22–30.  https://doi.org/10.1016/j.jns.2015.09.346 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA et al (2015) Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 11(12):711–724.  https://doi.org/10.1038/nrneurol.2015.222 CrossRefPubMedGoogle Scholar
  16. 16.
    O'Connell K, Kelly SB, Fogarty E, Duggan M, Buckley L, Hutchinson M, McGuigan C, Tubridy N (2014) Economic costs associated with an MS relapse. Mult Scler Relat Disord 3(6):678–683.  https://doi.org/10.1016/j.msard.2014.09.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Oliva-Moreno J, Trapero-Bertran M, Pena-Longobardo LM, Del Pozo-Rubio R (2016) The valuation of informal care in cost-of-illness studies: a systematic review. PharmacoEconomics 35:331–345.  https://doi.org/10.1007/s40273-016-0468-y CrossRefGoogle Scholar
  18. 18.
    Simmons SB, Pierson ER, Lee SY, Goverman JM (2013) Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 34(8):410–422.  https://doi.org/10.1016/j.it.2013.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat Rev Drug Discov 7(11):909–925.  https://doi.org/10.1038/nrd2358 CrossRefPubMedGoogle Scholar
  20. 20.
    Tokuhara N, Namiki K, Uesugi M, Miyamoto C, Ohgoh M, Ido K, Yoshinaga T, Yamauchi T et al (2010) N-type calcium channel in the pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem 285(43):33294–33306.  https://doi.org/10.1074/jbc.M109.089805 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schampel A, Volovitch O, Koeniger T, Scholz CJ, Jorg S, Linker RA, Wischmeyer E, Wunsch M et al (2017) Nimodipine fosters remyelination in a mouse model of multiple sclerosis and induces microglia-specific apoptosis. Proc Natl Acad Sci U S A 114(16):E3295–E3304.  https://doi.org/10.1073/pnas.1620052114 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pringos E, Vignes M, Martinez J, Rolland V (2011) Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on omega-agatoxins. Toxins (Basel) 3(1):17–42.  https://doi.org/10.3390/toxins3010017 CrossRefGoogle Scholar
  23. 23.
    Zhan C, Li C, Wei X, Lu W (2015) Toxins and derivatives in molecular pharmaceutics: drug delivery and targeted therapy. Adv Drug Deliv Rev 90:101–118.  https://doi.org/10.1016/j.addr.2015.04.025 CrossRefPubMedGoogle Scholar
  24. 24.
    Tonello R, Fusi C, Materazzi S, Marone IM, De Logu F, Benemei S, Goncalves MC, Coppi E et al (2017) The peptide Phalpha1beta, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br J Pharmacol 174(1):57–69.  https://doi.org/10.1111/bph.13652 CrossRefPubMedGoogle Scholar
  25. 25.
    Gomez MV, Kalapothakis E, Guatimosim C, Prado MA (2002) Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cell Mol Neurobiol 22(5–6):579–588CrossRefPubMedGoogle Scholar
  26. 26.
    Tonello R, Rigo F, Gewehr C, Trevisan G, Pereira EM, Gomez MV, Ferreira J (2014) Action of Phalpha1beta, a peptide from the venom of the spider Phoneutria nigriventer, on the analgesic and adverse effects caused by morphine in mice. J Pain 15(6):619–631.  https://doi.org/10.1016/j.jpain.2014.02.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Rosa F, Trevisan G, Rigo FK, Tonello R, Andrade EL, Cordeiro Mdo N, Calixto JB, Gomez MV et al (2014) Phalpha1beta, a peptide from the venom of the spider Phoneutria nigriventer shows antinociceptive effects after continuous infusion in a neuropathic pain model in rats. Anesth Analg 119(1):196–202.  https://doi.org/10.1213/ANE.0000000000000249 CrossRefPubMedGoogle Scholar
  28. 28.
    Diniz DM, de Souza AH, Pereira EM, da Silva JF, Rigo FK, Romano-Silva MA, Binda N, Castro CJ Jr et al (2014) Effects of the calcium channel blockers Phalpha1beta and omega-conotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice. Pharmacol Biochem Behav 126:97–102.  https://doi.org/10.1016/j.pbb.2014.09.017 CrossRefPubMedGoogle Scholar
  29. 29.
    Silva RB, Sperotto ND, Andrade EL, Pereira TC, Leite CE, de Souza AH, Bogo MR, Morrone FB et al (2015) Spinal blockage of P/Q- or N-type voltage-gated calcium channels modulates functional and symptomatic changes related to haemorrhagic cystitis in mice. Br J Pharmacol 172(3):924–939.  https://doi.org/10.1111/bph.12966 CrossRefPubMedGoogle Scholar
  30. 30.
    Nicoletti NF, Erig TC, Zanin RF, Roxo MR, Ferreira NP, Gomez MV, Morrone FB, Campos MM (2017) Pre-clinical evaluation of voltage-gated calcium channel blockers derived from the spider P. nigriventer in glioma progression. Toxicon: Off J Int Soc Toxinology 129:58–67.  https://doi.org/10.1016/j.toxicon.2017.02.001 CrossRefGoogle Scholar
  31. 31.
    Duggan PJ, Tuck KL (2015) Bioactive mimetics of conotoxins and other venom peptides. Toxins (Basel) 7(10):4175–4198.  https://doi.org/10.3390/toxins7104175 CrossRefGoogle Scholar
  32. 32.
    Amor S, Baker D (2012) Checklist for reporting and reviewing studies of experimental animal models of multiple sclerosis and related disorders. Mult Scler Relat Disord 1(3):111–115.  https://doi.org/10.1016/j.msard.2012.01.003 CrossRefPubMedGoogle Scholar
  33. 33.
    Dutra RC, Bento AF, Leite DF, Manjavachi MN, Marcon R, Bicca MA, Pesquero JB, Calixto JB (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54:82–93.  https://doi.org/10.1016/j.nbd.2013.02.007 CrossRefPubMedGoogle Scholar
  34. 34.
    Thell K, Hellinger R, Sahin E, Michenthaler P, Gold-Binder M, Haider T, Kuttke M, Liutkeviciute Z et al (2016) Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 113(15):3960–3965.  https://doi.org/10.1073/pnas.1519960113 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67(2–3):313–316 doi:0014–2999(80)90515–4CrossRefPubMedGoogle Scholar
  36. 36.
    Hou H, Cao R, Miao J, Sun Y, Liu X, Song X, Guo L (2016) Fingolimod ameliorates the development of experimental autoimmune encephalomyelitis by inhibiting Akt-mTOR axis in mice. Int Immunopharmacol 30:171–178.  https://doi.org/10.1016/j.intimp.2015.11.024 CrossRefPubMedGoogle Scholar
  37. 37.
    Maciel IS, Azevedo VM, Pereira TC, Bogo MR, Souza AH, Gomez MV, Campos MM (2014) The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice. Neuroscience 277:794–805.  https://doi.org/10.1016/j.neuroscience.2014.07.065 CrossRefPubMedGoogle Scholar
  38. 38.
    Quancard J, Bollbuck B, Janser P, Angst D, Berst F, Buehlmayer P, Streiff M, Beerli C et al (2012) A potent and selective S1P(1) antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem Biol 19(9):1142–1151.  https://doi.org/10.1016/j.chembiol.2012.07.016 CrossRefPubMedGoogle Scholar
  39. 39.
    Quintao NL, Passos GF, Medeiros R, Paszcuk AF, Motta FL, Pesquero JB, Campos MM, Calixto JB (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J Neurosci 28(11):2856–2863.  https://doi.org/10.1523/JNEUROSCI.4389-07.2008 CrossRefPubMedGoogle Scholar
  40. 40.
    Tsagareli MG, Tsiklauri N, Nozadze I, Gurtskaia G (2012) Tolerance effects of non-steroidal anti-inflammatory drugs microinjected into central amygdala, periaqueductal grey, and nucleus raphe: possible cellular mechanism. Neural Regen Res 7(13):1029–1039.  https://doi.org/10.3969/j.issn PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dutra RC, Moreira EL, Alberti TB, Marcon R, Prediger RD, Calixto JB (2013) Spatial reference memory deficits precede motor dysfunction in an experimental autoimmune encephalomyelitis model: the role of kallikrein-kinin system. Brain Behav Immun 33:90–101.  https://doi.org/10.1016/j.bbi.2013.06.002 CrossRefPubMedGoogle Scholar
  42. 42.
    Assini FL, Duzzioni M, Takahashi RN (2009) Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participation. Behav Brain Res 204(1):206–211.  https://doi.org/10.1016/j.bbr.2009.06.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Fernandes ES, Passos GF, Campos MM, de Souza GE, Fittipaldi JF, Pesquero JL, Teixeira MM, Calixto JB (2005) Cytokines and neutrophils as important mediators of platelet-activating factor-induced kinin B1 receptor expression. Br J Pharmacol 146(2):209–216.  https://doi.org/10.1038/sj.bjp.0706327 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ochoa-Reparaz J, Riccardi C, Rynda A, Jun S, Callis G, Pascual DW (2007) Regulatory T cell vaccination without autoantigen protects against experimental autoimmune encephalomyelitis. J Immunol 178(3):1791–1799CrossRefPubMedGoogle Scholar
  45. 45.
    Rynda A, Maddaloni M, Ochoa-Reparaz J, Callis G, Pascual DW (2010) IL-28 supplants requirement for T(reg) cells in protein sigma1-mediated protection against murine experimental autoimmune encephalomyelitis (EAE). PLoS One 5(1):e8720.  https://doi.org/10.1371/journal.pone.0008720 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Freitas RD, Costa KM, Nicoletti NF, Kist LW, Bogo MR, Campos MM (2016) Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. J Nutr Biochem 27:219–232.  https://doi.org/10.1016/j.jnutbio.2015.09.007 CrossRefPubMedGoogle Scholar
  47. 47.
    Radu CG, Shu CJ, Shelly SM, Phelps ME, Witte ON (2007) Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 104(6):1937–1942.  https://doi.org/10.1073/pnas.0610544104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baptista PP, Saur L, Bagatini PB, Greggio S, Venturin GT, Vaz SP, Ferreira Kdos R, Junqueira JS et al (2015) Antidepressant effects of ketamine are not related to (1)(8)F-FDG metabolism or tyrosine hydroxylase immunoreactivity in the ventral tegmental area of Wistar rats. Neurochem Res 40(6):1153–1164.  https://doi.org/10.1007/s11064-015-1576-3 CrossRefPubMedGoogle Scholar
  49. 49.
    Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. The Lancet Neurology 7(12):1139–1151.  https://doi.org/10.1016/S1474-4422(08)70259-X CrossRefPubMedGoogle Scholar
  50. 50.
    Hou H, Cao R, Miao J, Sun Y, Liu X, Song X, Guo L (2016) Fingolimod ameliorates the development of experimental autoimmune encephalomyelitis by inhibiting Akt-mTOR axis in mice. Int Immunopharmacol 30:171–178.  https://doi.org/10.1016/j.intimp.2015.11.024 CrossRefPubMedGoogle Scholar
  51. 51.
    Cassidy RM, Tong Q (2017) Hunger and satiety gauge reward sensitivity. Front Endocrinol 8:104.  https://doi.org/10.3389/fendo.2017.00104 CrossRefGoogle Scholar
  52. 52.
    Hutcheson J (2015) Adipokines influence the inflammatory balance in autoimmunity. Cytokine 75(2):272–279.  https://doi.org/10.1016/j.cyto.2015.04.004 CrossRefPubMedGoogle Scholar
  53. 53.
    Kawachi I, Lassmann H (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 88(2):137–145.  https://doi.org/10.1136/jnnp-2016-313300 CrossRefPubMedGoogle Scholar
  54. 54.
    Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Frontiers Cell Dev Biol 4:71.  https://doi.org/10.3389/fcell.2016.00071 Google Scholar
  55. 55.
    Sinmaz N, Nguyen T, Tea F, Dale RC, Brilot F (2016) Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system. J Neuroinflammation 13(1):219.  https://doi.org/10.1186/s12974-016-0678-4 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sama DM, Norris CM (2013) Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 12(4):982–995.  https://doi.org/10.1016/j.arr.2013.05.008 CrossRefPubMedGoogle Scholar
  57. 57.
    Tian DH, Perera CJ, Apostolopoulos V, Moalem-Taylor G (2013) Effects of vaccination with altered peptide ligand on chronic pain in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Front Neurol 4:168.  https://doi.org/10.3389/fneur.2013.00168 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Palhares MR, Silva JF, Rezende MJS, Santos DC, Silva-Junior CA, Borges MH, Ferreira J, Gomez MV et al (2017) Synergistic antinociceptive effect of a calcium channel blocker and a TRPV1 blocker in an acute pain model in mice. Life Sci 182:122–128.  https://doi.org/10.1016/j.lfs.2017.06.018 CrossRefPubMedGoogle Scholar
  59. 59.
    Rigo FK, Trevisan G, Rosa F, Dalmolin GD, Otuki MF, Cueto AP, de Castro Junior CJ, Romano-Silva MA et al (2013) Spider peptide Phalpha1beta induces analgesic effect in a model of cancer pain. Cancer Sci 104(9):1226–1230.  https://doi.org/10.1111/cas.12209 CrossRefPubMedGoogle Scholar
  60. 60.
    Gong N, Park J, Luo ZD (2017) Injury-induced maladaptation and dysregulation of calcium channel alpha2 delta subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol.  https://doi.org/10.1111/bph.13930
  61. 61.
    Schwartz M, Deczkowska A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10):668–679.  https://doi.org/10.1016/j.it.2016.08.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Hamalainen P, Rosti-Otajarvi E (2016) Cognitive impairment in MS: rehabilitation approaches. Acta Neurol Scand 134 Suppl 200:8–13.  https://doi.org/10.1111/ane.12650 CrossRefPubMedGoogle Scholar
  63. 63.
    Payne C, Wiffen PJ, Martin S (2017) WITHDRAWN: interventions for fatigue and weight loss in adults with advanced progressive illness. Cochrane Database Syst Rev 4:CD008427.  https://doi.org/10.1002/14651858.CD008427.pub3 PubMedGoogle Scholar
  64. 64.
    Farrokhi M, Dabirzadeh M, Fadaee E, Beni AA, Saadatpour Z, Rezaei A, Heidari Z (2016) Polymorphism in leptin and leptin receptor genes may modify leptin levels and represent risk factors for multiple sclerosis. Immunol Investig 45(4):328–335.  https://doi.org/10.3109/08820139.2016.1157811 CrossRefGoogle Scholar
  65. 65.
    Naylor C, Petri WA Jr (2016) Leptin regulation of immune responses. Trends Mol Med 22(2):88–98.  https://doi.org/10.1016/j.molmed.2015.12.001 CrossRefPubMedGoogle Scholar
  66. 66.
    Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59.  https://doi.org/10.1038/nri.2016.123 CrossRefPubMedGoogle Scholar
  67. 67.
    Perlman S, Zhao J (2017) Roles of regulatory T cells and IL-10 in virus-induced demyelination. J Neuroimmunol 308:6–11.  https://doi.org/10.1016/j.jneuroim.2017.01.001 CrossRefPubMedGoogle Scholar
  68. 68.
    Balasa RI, Mihaela S, Voidazan S, Barcutean LI, Bajko Z, Hutanu A, Simu I, Maier S (2017) Natalizumab changes the peripheral profile of the Th17 panel in Ms patients: new mechanisms of action. CNS & neurological disorders drug targets. doi: https://doi.org/10.2174/1871527316666170807130632
  69. 69.
    Luo C, Jian C, Liao Y, Huang Q, Wu Y, Liu X, Zou D, Wu Y (2017) The role of microglia in multiple sclerosis. Neuropsychiatr Dis Treat 13:1661–1667.  https://doi.org/10.2147/NDT.S140634 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Buck D, Forschler A, Lapa C, Schuster T, Vollmar P, Korn T, Nessler S, Stadelmann C et al (2012) 18F-FDG PET detects inflammatory infiltrates in spinal cord experimental autoimmune encephalomyelitis lesions. J Nucl Med: Off Publ Soc Nucl Med 53(8):1269–1276.  https://doi.org/10.2967/jnumed.111.102608 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rodrigo B. M. Silva
    • 1
    • 2
  • Samuel Greggio
    • 3
    • 4
  • Gianina T. Venturin
    • 3
  • Jaderson C. da Costa
    • 3
  • Marcus V. Gomez
    • 5
  • Maria M. Campos
    • 1
    • 2
    • 6
    • 7
  1. 1.Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da SaúdePontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  2. 2.Escola de Ciências da Saúde, Centro de Toxicologia e FarmacologiaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  3. 3.Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul – Brain Institute (BraIns)Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  4. 4.Escola de Ciências da Saúde, Curso de Graduação em BiomedicinaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  5. 5.Núcleo de Pós-GraduaçãoInstituto de Ensino e Pesquisa da Santa Casa de Belo HorizonteBelo HorizonteBrazil
  6. 6.Escola de Ciências da Saúde, Curso de Graduação em OdontologiaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  7. 7.Escola de Ciências da Saúde, Programa de Pós-Graduação em OdontologiaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil

Personalised recommendations