Resveratrol Acts Anti-Inflammatory and Neuroprotective in an Infant Rat Model of Pneumococcal Meningitis by Modulating the Hippocampal miRNome

  • Karina Barbosa de Queiroz
  • Thaís dos Santos Fontes Pereira
  • Márcio Sobreira Silva Araújo
  • Ricardo Santiago Gomez
  • Roney Santos Coimbra
Article

Abstract

Resveratrol (RSV) is anti-inflammatory and neuroprotective, cross the blood–brain barrier (BBB) and has a safe profile. Besides, RSV modulates the expression of some miRNAs related to neurological disorders. Thus, we hypothesized that RSV can be neuroprotective in pneumococcal meningitis by modulating the global microRNA expression profile (miRNome). Eleven-day old rats were intracysternally infected with S. pneumoniae (~ 2 × 106 c.f.u.) and were orally administered with RSV (50 mg/kg) or vehicle in pre-treatment (before infection) or post-treatment schedules (3 and 18 h p.i.). At 24 h p.i., animals were euthanized and apoptotic cells were counted in the hippocampal dentate gyrus of the right brain hemispheres. The hippocampi from left hemispheres were used for cytokines and chemokines multiplex assay and miRNome profiling with TaqMan OpenArray Rodent MicroRNA. Infected rats treated with RSV had lower apoptotic scores and IL-1β, CCL2, and CCL3 levels when compared to the infected group receiving placebo. Seven miRNAs were down regulated, and 18 were up regulated by pneumococcal acute meningitis. Thirty-seven miRNAs were down regulated, and three were up regulated (hsa-miR-15b-5p, hsa-miR-25-3p, hsa-miR-125b-5p) by the interaction between meningitis and RSV. Pathway enriched analysis revealed that meningitis and RSV modulate the expression of miRNAs targeting critical pathways related to the pathophysiology of bacterial meningitis. Nevertheless, hsa-miR-25-3p and hsa-miR-125b-5p target the transcription factor TEF-1, for which there are binding sites in Il-1β, Ccl 2 , and Ccl 3 genes. RSV is anti-inflammatory and neuroprotective in an infant rat model of pneumococcal meningitis and these positive effects involve the modulation of the hippocampal miRNome.

Keywords

Meningitis Streptococcus pneumoniae Resveratrol Neuroprotection microRNA miRNome 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1037_MOESM1_ESM.pdf (444 kb)
ESM 1 (PDF 443 kb)
12035_2018_1037_MOESM2_ESM.xlsx (18 kb)
ESM 2 (XLSX 17 kb)
12035_2018_1037_MOESM3_ESM.xlsx (249 kb)
ESM 3 (XLSX 249 kb)
12035_2018_1037_MOESM4_ESM.xlsx (16 kb)
ESM 4 (XLSX 15 kb)
12035_2018_1037_MOESM5_ESM.xlsx (16 kb)
ESM 5 (XLSX 16 kb)
12035_2018_1037_MOESM6_ESM.xlsx (21 kb)
ESM 6 (XLSX 21 kb)

References

  1. 1.
    Bellac C, Coimbra R, Christen S, Leib S (2006) Pneumococcal meningitis causes accumulation of neurotoxic kynurenine metabolites in brain regions prone to injury. Neurobiol Dis 24(2):395–402CrossRefPubMedGoogle Scholar
  2. 2.
    Khwannimit B, Chayakul P, Geater A (2004) Acute bacterial meningitis in adults: a 20 year review. Southeast Asian J Trop Med Public Health 35(4):886–892PubMedGoogle Scholar
  3. 3.
    Kim KS (2010) Acute bacterial meningitis in infants and children. Lancet Infect Dis 10(1):32–42.  https://doi.org/10.1016/S1473-3099(09)70306-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Pelton SI, Yogev R (2005) Improving the outcome of pneumococcal meningitis. Arch Dis Child 90(4):333–334.  https://doi.org/10.1136/adc.2004.052928 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stockmann C, Ampofo K, Byington CL, Filloux F, Hersh AL, Blaschke AJ, Cowan P, Korgenski K et al (2013) Pneumococcal meningitis in children: epidemiology, serotypes, and outcomes from 1997-2010 in Utah. Pediatrics 132(3):421–428.  https://doi.org/10.1542/peds.2013-0621 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bedford H, de Louvois J, Halket S, Peckham C, Hurley R, Harvey D (2001) Meningitis in infancy in England and Wales: follow up at age 5 years. BMJ 323(7312):533–536CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gerber J, Bruck W, Stadelmann C, Bunkowski S, Lassmann H, Nau R (2001) Expression of death-related proteins in dentate granule cells in human bacterial meningitis. Brain Pathol 11(4):422–431CrossRefPubMedGoogle Scholar
  8. 8.
    Nau R, Soto A, Bruck W (1999) Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol 58(3):265–274CrossRefPubMedGoogle Scholar
  9. 9.
    Gianinazzi C, Grandgirard D, Imboden H, Egger L, Meli DN, Bifrare YD, Joss PC, Tauber MG et al (2003) Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol 105(5):499–507.  https://doi.org/10.1007/s00401-003-0672-7 PubMedGoogle Scholar
  10. 10.
    Grimwood KAP, Anderson V, Tan L, Nolan T (2000) Twelve year outcomes following bacterial meningitis: further evidence for persisting effects. Arch Dis Child 83(2):111–116CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Loeffler JM, Ringer R, Hablutzel M, Tauber MG, Leib SL (2001) The free radical scavenger alpha-phenyl-tert-butyl nitrone aggravates hippocampal apoptosis and learning deficits in experimental pneumococcal meningitis. J Infect Dis 183(2):247–252.  https://doi.org/10.1086/317921 CrossRefPubMedGoogle Scholar
  12. 12.
    Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2(12):721–736CrossRefPubMedGoogle Scholar
  13. 13.
    Leib SL, Kim YS, Chow LL, Sheldon RA, Täuber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98(11):2632–2639.  https://doi.org/10.1172/JCI119084 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haberl RL, Anneser F, Ködel U, Pfister HW (1994) Is nitric oxide involved as a mediator of cerebrovascular changes in the early phase of experimental pneumococcal meningitis? Neurol Res 16(2):108–112CrossRefPubMedGoogle Scholar
  15. 15.
    van Furth AM, Roord JJ, van Furth R (1996) Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 64(12):4883–4890PubMedPubMedCentralGoogle Scholar
  16. 16.
    Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollander GA (2000) Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood-brain barrier damage and neurological sequelae. Clin Infect Dis 31(1):80–84.  https://doi.org/10.1086/313922 CrossRefPubMedGoogle Scholar
  17. 17.
    Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, Tauber MG, Leppert D (2001) Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 124(Pt 9):1734–1742CrossRefPubMedGoogle Scholar
  18. 18.
    Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77(5):1310–1318CrossRefPubMedGoogle Scholar
  19. 19.
    Chinchankar N, Mane M, Bhave S, Bapat S, Bavdekar A, Pandit A, Niphadkar K, Dutta A et al (2002) Diagnosis and outcome of acute bacterial meningitis in early childhood. Indian Pediatr 39(10):914–921PubMedGoogle Scholar
  20. 20.
    López-Cortés LF, Cruz-Ruiz M, Gómez-Mateos J, Viciana-Fernandez P, Martinez-Marcos FJ, Pachón J (1995) Interleukin-8 in cerebrospinal fluid from patients with meningitis of different etiologies: its possible role as neutrophil chemotactic factor. J Infect Dis 172(2):581–584CrossRefPubMedGoogle Scholar
  21. 21.
    Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Höjberg B, Lindquist L, Wretlind B et al (1999) Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun 67(5):2590–2601PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zwijnenburg PJ, van der Poll T, Roord JJ, van Furth AM (2006) Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun 74(3):1445–1451.  https://doi.org/10.1128/IAI.74.3.1445-1451.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kornelisse RF, Savelkoul HF, Mulder PH, Suur MH, van der Straaten PJ, van der Heijden AJ, Sukhai RN, Hählen K et al (1996) Interleukin-10 and soluble tumor necrosis factor receptors in cerebrospinal fluid of children with bacterial meningitis. J Infect Dis 173(6):1498–1502CrossRefPubMedGoogle Scholar
  24. 24.
    van Deuren M, van der Ven-Jongekrijg J, Vannier E, van Dalen R, Pesman G, Bartelink AK, Dinarello CA, van der Meer JW (1997) The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type II in acute meningococcal infections. Blood 90(3): 1101–1108.Google Scholar
  25. 25.
    Das S, Das DK (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 6(3):168–173CrossRefPubMedGoogle Scholar
  26. 26.
    de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35(Pt 5):1156–1160.  https://doi.org/10.1042/BST0351156 PubMedGoogle Scholar
  27. 27.
    Juhasz B, Varga B, Gesztelyi R, Kemeny-Beke A, Zsuga J, Tosaki A (2010) Resveratrol: a multifunctional cytoprotective molecule. Curr Pharm Biotechnol 11(8):810–818CrossRefPubMedGoogle Scholar
  28. 28.
    Shukla Y, Singh R (2011) Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci 1215:1–8.  https://doi.org/10.1111/j.1749-6632.2010.05870.x CrossRefPubMedGoogle Scholar
  29. 29.
    Zhong M, Cheng GF, Wang WJ, Guo Y, Zhu XY, Zhang JT (1999) Inhibitory effect of resveratrol on interleukin 6 release by stimulated peritoneal macrophages of mice. Phytomedicine 6(2):79–84.  https://doi.org/10.1016/S0944-7113(99)80039-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Arus BA, Souza DG, Bellaver B, Souza DO, Goncalves CA, Quincozes-Santos A, Bobermin LD (2017) Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol Cell Biochem 428(1–2):67–77.  https://doi.org/10.1007/s11010-016-2917-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Saleh MC, Connell BJ, Saleh TM (2010) Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptors. Neuroscience 166(2):445–454.  https://doi.org/10.1016/j.neuroscience.2009.12.060 CrossRefPubMedGoogle Scholar
  32. 32.
    Bellaver B, Souza DG, Bobermin LD, Souza DO, Goncalves CA, Quincozes-Santos A (2015) Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem Res 40(8):1600–1608.  https://doi.org/10.1007/s11064-015-1636-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355.  https://doi.org/10.1038/nature02871 CrossRefPubMedGoogle Scholar
  34. 34.
    Latruffe N, Lancon A, Frazzi R, Aires V, Delmas D, Michaille JJ, Djouadi F, Bastin J et al (2015) Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann N Y Acad Sci 1348(1):97–106.  https://doi.org/10.1111/nyas.12819 CrossRefPubMedGoogle Scholar
  35. 35.
    Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27(6):1027–1041.  https://doi.org/10.1007/s11095-010-0105-y CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065.  https://doi.org/10.1016/j.bcp.2010.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lancon A, Kaminski J, Tili E, Michaille JJ, Latruffe N (2012) Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J Agric Food Chem 60(36):8783–8789.  https://doi.org/10.1021/jf301479v CrossRefPubMedGoogle Scholar
  38. 38.
    Lancon A, Michaille JJ, Latruffe N (2013) Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis. J Sci Food Agric 93(13):3155–3164.  https://doi.org/10.1002/jsfa.6228 CrossRefPubMedGoogle Scholar
  39. 39.
    Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51.  https://doi.org/10.1016/j.freeradbiomed.2013.05.046 CrossRefPubMedGoogle Scholar
  40. 40.
    Camargo DRA, Sales Junior PA, Oliveira MAA, Coimbra RS (2015) Resveratrol susceptibility of Streptococcus pneumoniae and Neisseria meningitidis strains isolated in the state of Minas Gerais, Brazil, from 2007 to 2013. J Meningitis 1(1):5.  https://doi.org/10.4172/2572-2050.1000101 Google Scholar
  41. 41.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  42. 42.
    Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38(5):500–501.  https://doi.org/10.1038/ng0506-500 CrossRefPubMedGoogle Scholar
  43. 43.
    Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466.  https://doi.org/10.1093/nar/gkv403 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247.  https://doi.org/10.1093/nar/gkv1258 CrossRefPubMedGoogle Scholar
  45. 45.
    Xie X, Rigor P, Baldi P (2009) MotifMap: a human genome-wide map of candidate regulatory motif sites. Bioinformatics 25(2):167–174.  https://doi.org/10.1093/bioinformatics/btn605 CrossRefPubMedGoogle Scholar
  46. 46.
    Daily K, Patel VR, Rigor P, Xie X, Baldi P (2011) MotifMap: integrative genome-wide maps of regulatory motif sites for model species. BMC Bioinformatics 12:495.  https://doi.org/10.1186/1471-2105-12-495 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CM, Sachs D, Teixeira MM et al (2010) TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 221(1–2):42–45.  https://doi.org/10.1016/j.jneuroim.2010.02.009 CrossRefPubMedGoogle Scholar
  48. 48.
    Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651.  https://doi.org/10.1101/cshperspect.a001651 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ito Y, Daitoku H, Fukamizu A (2009) Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun 378(2):290–295.  https://doi.org/10.1016/j.bbrc.2008.11.043 CrossRefPubMedGoogle Scholar
  50. 50.
    Wang Y, Zhou Y, Graves DT (2014) FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014:925350–925313.  https://doi.org/10.1155/2014/925350 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ponugoti B, Dong G, Graves DT (2012) Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res 2012:939751–939757.  https://doi.org/10.1155/2012/939751 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490.  https://doi.org/10.1038/28867 CrossRefPubMedGoogle Scholar
  53. 53.
    Krick S, Eul BG, Hanze J, Savai R, Grimminger F, Seeger W, Rose F (2005) Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol 32(5):395–403.  https://doi.org/10.1165/rcmb.2004-0314OC CrossRefPubMedGoogle Scholar
  54. 54.
    Engelhardt B (2011) beta1-integrin/matrix interactions support blood-brain barrier integrity. J Cereb Blood Flow Metab 31(10):1969–1971.  https://doi.org/10.1038/jcbfm.2011.98 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chaussabel D, Sher A (2002) Mining microarray expression data by literature profiling. Genome Biol 3:RESEARCH0055CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gao D, Zhang X, Jiang X, Peng Y, Huang W, Cheng G, Song L (2006) Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sci 78(22):2564–2570.  https://doi.org/10.1016/j.lfs.2005.10.030 CrossRefPubMedGoogle Scholar
  57. 57.
    Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23(9):2078–2093.  https://doi.org/10.1200/JCO.2005.02.047 CrossRefPubMedGoogle Scholar
  58. 58.
    Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53(17):3976–3985PubMedGoogle Scholar
  59. 59.
    Los M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10(6):629–639CrossRefPubMedGoogle Scholar
  60. 60.
    Virág L, Szabó E, Gergely P, Szabó C (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140-141:113–124CrossRefPubMedGoogle Scholar
  61. 61.
    Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511(2):145–178CrossRefPubMedGoogle Scholar
  62. 62.
    Koedel U, Winkler F, Angele B, Fontana A, Pfister HW (2002) Meningitis-associated central nervous system complications are mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 22(1):39–49.  https://doi.org/10.1097/00004647-200201000-00005 CrossRefPubMedGoogle Scholar
  63. 63.
    Yu SW, Wang H, Dawson TM, Dawson VL (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 14(3):303–317CrossRefPubMedGoogle Scholar
  64. 64.
    Alikhani M, Alikhani Z, Graves DT (2005) FOXO1 functions as a master switch that regulates gene expression necessary for tumor necrosis factor-induced fibroblast apoptosis. J Biol Chem 280(13):12096–12102.  https://doi.org/10.1074/jbc.M412171200 CrossRefPubMedGoogle Scholar
  65. 65.
    Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, Goellner J, Weinstein RS et al (2010) FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 11(2):136–146.  https://doi.org/10.1016/j.cmet.2009.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115(7):1806–1815.  https://doi.org/10.1172/JCI23865 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201(1):105–115.  https://doi.org/10.1084/jem.20040624 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18(7):1087–1094.  https://doi.org/10.1038/nm.2834 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y et al (2015) miR-381 regulates neural stem cell proliferation and differentiation via regulating Hes1 expression. PLoS One 10(10):e0138973.  https://doi.org/10.1371/journal.pone.0138973 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gerber J, Bottcher T, Bering J, Bunkowski S, Bruck W, Kuhnt U, Nau R (2003) Increased neurogenesis after experimental Streptococcus pneumoniae meningitis. J Neurosci Res 73(4):441–446.  https://doi.org/10.1002/jnr.10682 CrossRefPubMedGoogle Scholar
  72. 72.
    Hofer S, Grandgirard D, Burri D, Fröhlich TK, Leib SL (2011) Bacterial meningitis impairs hippocampal neurogenesis. J Neuropathol Exp Neurol 70(10):890–899.  https://doi.org/10.1097/NEN.0b013e3182303f31 CrossRefPubMedGoogle Scholar
  73. 73.
    Lindberg RL, Sorsa T, Tervahartiala T, Hoffmann F, Mellanen L, Kappos L, Schaad UB, Leib SL et al (2006) Gelatinase B [matrix metalloproteinase (MMP)-9] and collagenases (MMP-8/−13) are upregulated in cerebrospinal fluid during aseptic and bacterial meningitis in children. Neuropathol Appl Neurobiol 32(3):304–317.  https://doi.org/10.1111/j.1365-2990.2006.00729.x CrossRefPubMedGoogle Scholar
  74. 74.
    Leib SL, Leppert D, Clements J, Tauber MG (2000) Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 68(2):615–620CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Leppert D, Lindberg RL, Kappos L, Leib SL (2001) Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 36(2–3):249–257CrossRefPubMedGoogle Scholar
  76. 76.
    Liechti FD, Grandgirard D, Leppert D, Leib SL (2014) Matrix metalloproteinase inhibition lowers mortality and brain injury in experimental pneumococcal meningitis. Infect Immun 82(4):1710–1718.  https://doi.org/10.1128/IAI.00073-14 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687CrossRefPubMedGoogle Scholar
  78. 78.
    Osada T, Gu YH, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, Milner R, del Zoppo GJ (2011) Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins. J Cereb Blood Flow Metab 31(10):1972–1985.  https://doi.org/10.1038/jcbfm.2011.99 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kerrisk ME, Cingolani LA, Koleske AJ (2014) ECM receptors in neuronal structure, synaptic plasticity, and behavior. Prog Brain Res 214:101–131.  https://doi.org/10.1016/B978-0-444-63486-3.00005-0 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Chang Y, Wang SJ (2009) Inhibitory effect of glutamate release from rat cerebrocortical nerve terminals by resveratrol. Neurochem Int 54(2):135–141.  https://doi.org/10.1016/j.neuint.2008.11.001 CrossRefPubMedGoogle Scholar
  81. 81.
    Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309CrossRefPubMedGoogle Scholar
  82. 82.
    Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN et al (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89(7):1165–1173CrossRefPubMedGoogle Scholar
  83. 83.
    Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389(6651):622–626.  https://doi.org/10.1038/39355 CrossRefPubMedGoogle Scholar
  84. 84.
    Malipiero U, Koedel U, Pfister W, Fontana A (2007) Bacterial meningitis: the role of transforming growth factor-Beta in innate immunity and secondary brain damage. Neurodegener Dis 4(1):43–50.  https://doi.org/10.1159/000100358 CrossRefPubMedGoogle Scholar
  85. 85.
    Suzumura A, Sawada M, Yamamoto H, Marunouchi T (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151(4):2150–2158PubMedGoogle Scholar
  86. 86.
    Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN et al (2000) Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275(47):36653–36658.  https://doi.org/10.1074/jbc.M004536200 CrossRefPubMedGoogle Scholar
  87. 87.
    Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4(1):51–58.  https://doi.org/10.1038/ncb731 CrossRefPubMedGoogle Scholar
  88. 88.
    Jones KL, Mansell A, Patella S, Scott BJ, Hedger MP, de Kretser DM, Phillips DJ (2007) Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc Natl Acad Sci U S A 104(41):16239–16244.  https://doi.org/10.1073/pnas.0705971104 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Michel U, Gerber J, EOC A, Bunkowski S, Bruck W, Nau R, Phillips DJ (2003) Increased activin levels in cerebrospinal fluid of rabbits with bacterial meningitis are associated with activation of microglia. J Neurochem 86(1):238–245CrossRefPubMedGoogle Scholar
  90. 90.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040.  https://doi.org/10.1038/sj.onc.1207116 CrossRefPubMedGoogle Scholar
  91. 91.
    Braun JS, Novak R, Herzog KH, Bodner SM, Cleveland JL, Tuomanen EI (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 5(3):298–302.  https://doi.org/10.1038/6514 CrossRefPubMedGoogle Scholar
  92. 92.
    Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, Weber JR (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109(1):19–27.  https://doi.org/10.1172/JCI12035 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mitchell L, Smith SH, Braun JS, Herzog KH, Weber JR, Tuomanen EI (2004) Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis 190(11):2039–2046.  https://doi.org/10.1086/425520 CrossRefPubMedGoogle Scholar
  94. 94.
    Moriya J, Chen R, Yamakawa J, Sasaki K, Ishigaki Y, Takahashi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34(3):354–359CrossRefPubMedGoogle Scholar
  95. 95.
    Tiwari V, Chopra K (2011) Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain. J Neurochem 117(4):678–690.  https://doi.org/10.1111/j.1471-4159.2011.07236.x PubMedGoogle Scholar
  96. 96.
    Sheu JN, Liao WC, Wu UI, Shyu LY, Mai FD, Chen LY, Chen MJ, Youn SC et al (2013) Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis. Comp Immunol Microbiol Infect Dis 36(2):137–148.  https://doi.org/10.1016/j.cimid.2012.11.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imunopatologia / NeurogenômicaInstituto René Rachou, Fiocruz-MinasBelo HorizonteBrazil
  2. 2.Departamento de Cirurgia Oral e Patologia, Escola de OdontologiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Grupo Integrado de Pesquisas em BiomarcadoresInstituto René Rachou, Fiocruz-MinasBelo HorizonteBrazil

Personalised recommendations