Molecular Neurobiology

, Volume 55, Issue 5, pp 4253–4266 | Cite as

Chronic Cerebral Hypoperfusion Induced Synaptic Proteome Changes in the rat Cerebral Cortex

  • Katalin Völgyi
  • Péter Gulyássy
  • Mihail Ivilinov Todorov
  • Gina Puska
  • Kata Badics
  • Dávid Hlatky
  • Katalin Adrienna Kékesi
  • Gabriella Nyitrai
  • András Czurkó
  • László Drahos
  • Arpád Dobolyi
Article

Abstract

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer’s disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.

Keywords

Chronic cerebral hypoperfusion Vascular dementia Alzheimer’s disease Synaptic proteome Label-free LC-MS/MS GABAergic synapse Apolipoprotein E 

Abbreviations

AD

Alzheimer’s disease

APOE

Apolipoprotein E

BCCAO

Bilateral common carotid artery occlusion

CCH

Chronic cerebral hypoperfusion

Notes

Acknowledgements

This study was supported by Gedeon Richter Plc, the Hungarian National Research, Development and Innovation Office (KMOP-1.1.5-08-2009-0001, KTIA_NAP_13-1-2013-0001, KTIA_NAP_B_13-2-2014-0004 and KTIA_NAP_13-2-2015-0003 programs). The founders had no role in the study design; in the collection, analysis and interpretation of data; in writing of the manuscript; and in the decision to submit the article for publication. We would like to thank Dr. Gábor Juhász for helpful discussions on the research plan.

Compliance with Ethical Guidelines

The care and experimentation of all animals conformed to the Hungarian Act of Animal Care and Experimentation (1998, XXVIII) and to the guidelines of the European Communities Council Directive, 86/609/EEC as well as with local regulations for the care and use of animals for research.

References

  1. 1.
    Cankurtaran M, Yavuz BB, Cankurtaran ES, Halil M, Ulger Z, Ariogul S (2008) Risk factors and type of dementia: vascular or Alzheimer? Arch Gerontol Geriatr 47:25–34CrossRefPubMedGoogle Scholar
  2. 2.
    Valerio Romanini C, Dias Fiuza Ferreira E, Correia Bacarin C, Verussa MH, Weffort de Oliveira RM, Milani H (2013) Neurohistological and behavioral changes following the four-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Behav Brain Res 252:214–221CrossRefPubMedGoogle Scholar
  3. 3.
    Sato N, Morishita R (2013) Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors. Front Aging Neurosci 5:64CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, Terzi A, Vignolo LA et al (2006) Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 27:24–31CrossRefPubMedGoogle Scholar
  5. 5.
    Zadori D, Datki Z, Penke B (2007) The role of chronic brain hypoperfusion in the pathogenesis of Alzheimer’s disease—facts and hypotheses. Ideggyogy Sz 60:428–437PubMedGoogle Scholar
  6. 6.
    Shankar GM, Walsh DM (2009) Alzheimer's disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54:162–180CrossRefPubMedGoogle Scholar
  8. 8.
    Jing Z, Shi C, Zhu L, Xiang Y, Chen P, Xiong Z, Li W, Ruan Y et al (2015) Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J Cereb Blood Flow Metab 35:1249–1259CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cechetti F, Worm PV, Pereira LO, Siqueira IR, Netto AC (2010) The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 43:1178–1183CrossRefPubMedGoogle Scholar
  10. 10.
    de la Torre JC, Pappas BA, Prevot V, Emmerling MR, Mantione K, Fortin T, Watson MD, Stefano GB (2003) Hippocampal nitric oxide upregulation precedes memory loss and A beta 1-40 accumulation after chronic brain hypoperfusion in rats. Neurol Res 25:635–641CrossRefPubMedGoogle Scholar
  11. 11.
    Wang X, Lin F, Gao Y, Lei H (2015) Bilateral common carotid artery occlusion induced brain lesions in rats: a longitudinal diffusion tensor imaging study. Magn Reson Imaging 33:551–558CrossRefPubMedGoogle Scholar
  12. 12.
    Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, Kitamura A, Washida K et al (2012) Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol 123:381–394CrossRefPubMedGoogle Scholar
  13. 13.
    Zhiyou C, Yong Y, Shanquan S, Jun Z, Liangguo H, Ling Y, Jieying L (2009) Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res 34:1226–1235CrossRefPubMedGoogle Scholar
  14. 14.
    Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z, Borgmann-Winter KE, Grosser T et al (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4:e5251CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Volgyi K, Gulyassy P, Haden K, Kis V, Badics K, Kekesi KA, Simor A, Gyorffy B et al (2015) Synaptic mitochondria: a brain mitochondria cluster with a specific proteome. J Proteome 120:142–157CrossRefGoogle Scholar
  16. 16.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefPubMedGoogle Scholar
  17. 17.
    Soria G, Tudela R, Marquez-Martin A, Camon L, Batalle D, Munoz-Moreno E, Eixarch E, Puig J et al (2013) The ins and outs of the BCCAo model for chronic hypoperfusion: a multimodal and longitudinal MRI approach. PLoS One 8:e74631CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Roberts RC, Roche JK, McCullumsmith RE (2014) Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 277:522–540CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8:161PubMedPubMedCentralGoogle Scholar
  20. 20.
    Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462CrossRefPubMedGoogle Scholar
  21. 21.
    Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035PubMedGoogle Scholar
  22. 22.
    Lu Y, Li CJ, Chen C, Luo P, Zhou M, Li C, Xu XL, Lu Q et al (2016) Activation of GABAB2 subunits alleviates chronic cerebral hypoperfusion-induced anxiety-like behaviours: A role for BDNF signalling and Kir3 channels. Neuropharmacology 110:308–321CrossRefPubMedGoogle Scholar
  23. 23.
    Luo P, Chen C, Lu Y, Fu T, Lu Q, Xu X, Li C, He Z et al (2016) Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats. Behav Brain Res 308:6–13CrossRefPubMedGoogle Scholar
  24. 24.
    Liu L, Li CJ, Lu Y, Zong XG, Luo C, Sun J, Guo LJ (2015) Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep 5:14474CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li CJ, Lu Y, Zhou M, Zong XG, Li C, Xu XL, Guo LJ, Lu Q (2014) Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion. Mol Neurobiol 50:704–720CrossRefPubMedGoogle Scholar
  26. 26.
    Bahn JH, Kwon OS, Joo HM, Ho Jang S, Park J, Hwang IK, Kang TC, Won MH et al (2002) Immunohistochemical studies of brain pyridoxine-5′-phosphate oxidase. Brain Res 925:159–168CrossRefPubMedGoogle Scholar
  27. 27.
    Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM (2004) Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol 477:360–370CrossRefPubMedGoogle Scholar
  28. 28.
    Picklo MJ Sr, Olson SJ, Hayes JD, Markesbery WR, Montine TJ (2001) Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Res 916:229–238CrossRefPubMedGoogle Scholar
  29. 29.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Linnertz C, Anderson L, Gottschalk W, Crenshaw D, Lutz MW, Allen J, Saith S, Mihovilovic M et al (2014) The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimers Dement 10:541–551CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Laske C (2012) Clinical and biomarker changes in Alzheimer’s disease. N Engl J Med 367:2050 author reply 2051-2052 CrossRefPubMedGoogle Scholar
  32. 32.
    Martinez-Morillo E, Hansson O, Atagi Y, Bu G, Minthon L, Diamandis EP, Nielsen HM (2014) Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol 127:633–643CrossRefPubMedGoogle Scholar
  33. 33.
    Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A 107:12011–12016CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Roses AD, Saunders AM, Lutz MW, Zhang N, Hariri AR, Asin KE, Crenshaw DG, Budur K et al (2014) New applications of disease genetics and pharmacogenetics to drug development. Curr Opin Pharmacol 14:81–89CrossRefPubMedGoogle Scholar
  36. 36.
    Maruszak A, Peplonska B, Safranow K, Chodakowska-Zebrowska M, Barcikowska M, Zekanowski C (2012) TOMM40 rs10524523 polymorphism’s role in late-onset Alzheimer’s disease and in longevity. J Alzheimers Dis 28:309–322PubMedGoogle Scholar
  37. 37.
    Dhillon VS, Fenech M (2014) Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Mutat Res Rev Mutat Res 759:1–13CrossRefPubMedGoogle Scholar
  38. 38.
    Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–117 discussion 173-180 CrossRefPubMedGoogle Scholar
  39. 39.
    Xu PT, Li YJ, Qin XJ, Kroner C, Green-Odlum A, Xu H, Wang TY, Schmechel DE et al (2007) A SAGE study of apolipoprotein E3/3, E3/4 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Mol Cell Neurosci 36:313–331CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yamazaki M, Matsuo R, Fukazawa Y, Ozawa F, Inokuchi K (2001) Regulated expression of an actin-associated protein, synaptopodin, during long-term potentiation. J Neurochem 79:192–199CrossRefPubMedGoogle Scholar
  41. 41.
    Connelly SJ, Mukaetova-Ladinska EB, Abdul-All Z, Alves da Silva J, Brayne C, Honer WG, Mann DM (2011) Synaptic changes in frontotemporal lobar degeneration: correlation with MAPT haplotype and APOE genotype. Neuropathol Appl Neurobiol 37:366–380CrossRefPubMedGoogle Scholar
  42. 42.
    Furuya TK, Silva PN, Payao SL, Bertolucci PH, Rasmussen LT, De Labio RW, Braga IL, Chen ES et al (2012) Analysis of SNAP25 mRNA expression and promoter DNA methylation in brain areas of Alzheimer’s disease patients. Neuroscience 220:41–46CrossRefPubMedGoogle Scholar
  43. 43.
    Guerini FR, Agliardi C, Sironi M, Arosio B, Calabrese E, Zanzottera M, Bolognesi E, Ricci C et al (2014) Possible association between SNAP-25 single nucleotide polymorphisms and alterations of categorical fluency and functional MRI parameters in Alzheimer’s disease. J Alzheimers Dis 42:1015–1028PubMedGoogle Scholar
  44. 44.
    Fan HP, Fan FJ, Bao L, Pei G (2006) SNAP-25/syntaxin 1A complex functionally modulates neurotransmitter gamma-aminobutyric acid reuptake. J Biol Chem 281:28174–28184CrossRefPubMedGoogle Scholar
  45. 45.
    Chapman ER, An S, Barton N, Jahn R (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem 269:27427–27432PubMedGoogle Scholar
  46. 46.
    Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T, Pihlajamaki M, Laakso MP et al (2008) MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging 29:31–38CrossRefPubMedGoogle Scholar
  47. 47.
    Skoog I, Hesse C, Fredman P, Andreasson LA, Palmertz B, Blennow K (1997) Apolipoprotein E in cerebrospinal fluid in 85-year-old subjects. Relation to dementia, apolipoprotein E polymorphism, cerebral atrophy, and white matter lesions. Arch Neurol 54:267–272CrossRefPubMedGoogle Scholar
  48. 48.
    Kielian T, Esen N (2004) Effects of neuroinflammation on glia-glia gap junctional intercellular communication: a perspective. Neurochem Int 45:429–436CrossRefPubMedGoogle Scholar
  49. 49.
    Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196CrossRefPubMedGoogle Scholar
  50. 50.
    Leithe E, Rivedal E (2004) Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem 279:50089–50096CrossRefPubMedGoogle Scholar
  51. 51.
    Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L (2011) The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci 124:2611–2621CrossRefPubMedGoogle Scholar
  52. 52.
    Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y (2015) Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 49:293–310CrossRefPubMedGoogle Scholar
  53. 53.
    Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1-42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 1044:206–215CrossRefPubMedGoogle Scholar
  54. 54.
    Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29:8143–8155CrossRefPubMedGoogle Scholar
  55. 55.
    Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ (2013) Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nat Commun 4:1681CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rohe M, Carlo AS, Breyhan H, Sporbert A, Militz D, Schmidt V, Wozny C, Harmeier A et al (2008) Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis. J Biol Chem 283:14826–14834CrossRefPubMedGoogle Scholar
  57. 57.
    Ahn EH, Kim DW, Shin MJ, Kim HR, Kim SM, Woo SJ, Eom SA, Jo HS et al (2014) PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson’s disease. Biochim Biophys Acta 1840:1686–1700CrossRefPubMedGoogle Scholar
  58. 58.
    Habelhah H, Shah K, Huang L, Ostareck-Lederer A, Burlingame AL, Shokat KM, Hentze MW, Ronai Z (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3:325–330CrossRefPubMedGoogle Scholar
  59. 59.
    Liang D, Han G, Feng X, Sun J, Duan Y, Lei H (2012) Concerted perturbation observed in a hub network in Alzheimer’s disease. PLoS One 7:e40498CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chen HC, Lin WC, Tsay YG, Lee SC, Chang CJ (2002) An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K. J Biol Chem 277:40403–40409CrossRefPubMedGoogle Scholar
  61. 61.
    Taniguchi M, Okayama Y, Hashimoto Y, Kitaura M, Jimbo D, Wakutani Y, Wada-Isoe K, Nakashima K et al (2008) Sugar chains of cerebrospinal fluid transferrin as a new biological marker of Alzheimer’s disease. Dement Geriatr Cogn Disord 26:117–122CrossRefPubMedGoogle Scholar
  62. 62.
    Booyjzsen C, Scarff CA, Moreton B, Portman I, Scrivens JH, Costantini G, Sadler PJ (2012) Fibrillation of transferrin. Biochim Biophys Acta 1820:427–436CrossRefPubMedGoogle Scholar
  63. 63.
    Khachaturian ZS (2008) Alzheimer’s & dementia: the Journal of the Alzheimer’s Association. Alzheimers Dement 4:315CrossRefPubMedGoogle Scholar
  64. 64.
    Conner SD, Schmid SL (2002) Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 156:921–929CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fernandez-Chacon R, Achiriloaie M, Janz R, Albanesi JP, Sudhof TC (2000) SCAMP1 function in endocytosis. J Biol Chem 275:12752–12756CrossRefPubMedGoogle Scholar
  66. 66.
    Davidson JO, Green CR, Bennet L, Nicholson LF, Danesh-Meyer H, O'Carroll SJ, Gunn AJ (2013) A key role for connexin hemichannels in spreading ischemic brain injury. Curr Drug Targets 14:36–46CrossRefPubMedGoogle Scholar
  67. 67.
    Masaki K, Suzuki SO, Matsushita T, Matsuoka T, Imamura S, Yamasaki R, Suzuki M, Suenaga T et al (2013) Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. PLoS One 8:e72919CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wallach G, Lallouette J, Herzog N, De Pitta M, Ben Jacob E, Berry H, Hanein Y (2014) Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10:e1003964CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 96:15233–15238CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ophir G, Meilin S, Efrati M, Chapman J, Karussis D, Roses A, Michaelson DM (2003) Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol Dis 12:56–64CrossRefPubMedGoogle Scholar
  71. 71.
    Zekonyte J, Sakai K, Nicoll JA, Weller RO, Carare RO (2016) Quantification of molecular interactions between ApoE, amyloid-beta (Abeta) and laminin: relevance to accumulation of Abeta in Alzheimer’s disease. Biochim Biophys Acta 1862:1047–1053CrossRefPubMedGoogle Scholar
  72. 72.
    Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein-Cline M, Kanabar P, Collins N, Ben-Aissa M et al (2015) APOE-modulated Abeta-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. J Neurochem 133:465–488CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Murphy MP, Corriveau RA, Wilcock DM (2016) Vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta 1862:857–859CrossRefPubMedGoogle Scholar
  74. 74.
    Chihara T, Luginbuhl D, Luo L (2007) Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 10:828–837CrossRefPubMedGoogle Scholar
  75. 75.
    Folci A, Mapelli L, Sassone J, Prestori F, D'Angelo E, Bassani S, Passafaro M (2014) Loss of hnRNP K impairs synaptic plasticity in hippocampal neurons. J Neurosci 34:9088–9095CrossRefPubMedGoogle Scholar
  76. 76.
    Tanaka S, Uehara T, Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275:10388–10393CrossRefPubMedGoogle Scholar
  77. 77.
    Ding M, Shen K (2008) The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. BioEssays 30:1075–1083CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 11:4722–4732CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lyon RC, Johnston SM, Watson DG, McGarvie G, Ellis EM (2007) Synthesis and catabolism of gamma-hydroxybutyrate in SH-SY5Y human neuroblastoma cells: role of the aldo-keto reductase AKR7A2. J Biol Chem 282:25986–25992CrossRefPubMedGoogle Scholar
  80. 80.
    Manya H, Aoki J, Watanabe M, Adachi T, Asou H, Inoue Y, Arai H, Inoue K (1998) Switching of platelet-activating factor acetylhydrolase catalytic subunits in developing rat brain. J Biol Chem 273:18567–18572CrossRefPubMedGoogle Scholar
  81. 81.
    Kamada H, Sato K, Zhang WR, Omori N, Nagano I, Shoji M, Abe K (2003) Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain. J Neurosci Res 73:545–556CrossRefPubMedGoogle Scholar
  82. 82.
    McKenna MC, Stevenson JH, Huang XL, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36:451–459CrossRefPubMedGoogle Scholar
  83. 83.
    Christel CJ, Schaer R, Wang S, Henzi T, Kreiner L, Grabs D, Schwaller B, Lee A (2012) Calretinin regulates Ca2+-dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the alpha12.1 subunit. J Biol Chem 287:39766–39775CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Katalin Völgyi
    • 1
  • Péter Gulyássy
    • 2
  • Mihail Ivilinov Todorov
    • 1
    • 3
  • Gina Puska
    • 4
  • Kata Badics
    • 3
  • Dávid Hlatky
    • 5
  • Katalin Adrienna Kékesi
    • 2
    • 6
  • Gabriella Nyitrai
    • 5
  • András Czurkó
    • 5
  • László Drahos
    • 2
  • Arpád Dobolyi
    • 1
  1. 1.MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of BiologyHungarian Academy of Sciences and Eötvös Loránd UniversityBudapestHungary
  2. 2.MTA-TTK NAP B MS Neuroproteomics Research GroupHungarian Academy of SciencesBudapestHungary
  3. 3.Laboratory of Proteomics, Institute of BiologyEötvös Loránd UniversityBudapestHungary
  4. 4.Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
  5. 5.Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety ResearchRichter Gedeon PlcBudapestHungary
  6. 6.Department of Physiology and NeurobiologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations