Molecular Neurobiology

, Volume 55, Issue 5, pp 3718–3724 | Cite as

BRAF Mutation is Associated with an Improved Survival in Glioma—a Systematic Review and Meta-analysis

  • Huy Gia Vuong
  • Ahmed M. A. Altibi
  • Uyen N. P. Duong
  • Hanh T. T. Ngo
  • Thong Quang Pham
  • Kar-Ming Fung
  • Lewis Hassell
Article

Abstract

Newly emerged molecular markers in gliomas provide prognostic values beyond the capabilities of histologic classification. BRAF mutation, especially BRAF V600E, is common in a subset of gliomas and may represent a potential prognostic marker. The aim of our study is to investigate the potential use of BRAF mutations on prognosis of glioma patients. Four electronic databases were searched for potential articles, including PubMed, Scopus, ISI Web of Science, and Virtual Health Library (VHL). Data of hazard ratio (HR) for overall survival (OS) and progression-free survival (PFS) were directly obtained from original papers or indirectly estimated from Kaplan Meier curve (KMC). A random effect model weighted by inverse variance method was used to calculate the pooled HR. From 705 articles, we finally included 11 articles with 1308 glioma patients for the final analysis. The overall estimates showed that BRAF V600E was associated with an improved overall survival (OS) in glioma patients (HR = 0.60; 95% CI = 0.44–0.80). Results for progression-free survival (PFS), however, were not statistically significant (HR = 1.39; 95% CI = 0.82–2.34). In subgroup analyses, BRAF V600E showed its effect in improving survival in pediatric and young adult gliomas (under 35 years) but did not have prognostic value in old adult. Additionally, BRAF V600E was only associated with a favorable prognosis in lower grade glioma. Our meta-analysis provides evidence that BRAF mutation has a favorable prognostic impact in gliomas and its prognostic value might be dependent on patient age and tumor grade. This mutation can be used as a prognostic factor in glioma but additional studies are required to clarify its prognostic value taking into account other confounding factors.

Keywords

BRAF mutation BRAF V600E Glioma Glioblastoma Overall survival Progression-free survival Meta-analysis Review 

Notes

Acknowledgement

We specially thank Dr. Aden Ka-Yin Chan (Chinese University of Hong Kong) and Dr. Chul-Kee Park (Seoul National University) for providing necessary data.

Compliance with Ethical Standards

Our study protocol strictly followed the recommendation of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement [8].

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Support

No funding support to report.

References

  1. 1.
    Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72(1):2–7. doi: 10.1097/NEN.0b013e318279f3db CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405. doi: 10.1007/s00401-011-0802-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Ida CM, Rodriguez FJ, Burger PC, Caron AA, Jenkins SM, Spears GM, Aranguren DL, Lachance DH et al (2015) Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol 25(5):575–586. doi: 10.1111/bpa.12217 CrossRefPubMedGoogle Scholar
  4. 4.
    Safaee Ardekani G, Jafarnejad SM, Tan L, Saeedi A, Li G (2012) The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 7(10):e47054. doi: 10.1371/journal.pone.0047054 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li C, Lee KC, Schneider EB, Zeiger MA (2012) BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab 97(12):4559–4570. doi: 10.1210/jc.2012-2104 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bannykh S, Kandala G (2014) V600E BRAF mutation in pilocytic astrocytoma is associated with a more diffuse growth pattern but does not confer a more aggressive clinical behavior. Brain Pathol 24:76–76Google Scholar
  7. 7.
    Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, Batchelor TT, Ligon KL et al (2011) BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 6(3):e17948. doi: 10.1371/journal.pone.0017948 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. doi: 10.1371/journal.pmed.1000097 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. doi: 10.1186/1745-6215-8-16 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P (2000) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysesGoogle Scholar
  11. 11.
    Higgins J, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558CrossRefPubMedGoogle Scholar
  12. 12.
    Evangelou E, Ioannidis JP, Patsopoulos NA (2007) Uncertainty in heterogeneity estimates in meta-analyses. BMJ: Br Med J 335(7626):914–916CrossRefGoogle Scholar
  13. 13.
    Van Rhee H, Suurmond R, Hak T (2015) User manual for meta-essentials: workbooks for meta-analyses. Erasmus Research Institute of Management, Rotterdam. Retrieved from www.erim.eur.nl/research-support/metaessentials Google Scholar
  14. 14.
    Cruz GR, Dias Oliveira I, Moraes L, Del Giudice Paniago M, de Seixas Alves MT, Capellano AM, Saba-Silva N, Cavalheiro S et al (2014) Analysis of KIAA1549-BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas. J Neuro-Oncol 117(2):235–242. doi: 10.1007/s11060-014-1398-1 CrossRefGoogle Scholar
  15. 15.
    Ho CY, Mobley BC, Gordish-Dressman H, VandenBussche CJ, Mason GE, Bornhorst M, Esbenshade AJ, Tehrani M et al (2015) A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathol 130(4):575–585. doi: 10.1007/s00401-015-1467-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-Oncology 14(6):777–789. doi: 10.1093/neuonc/nos077 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, Meyer J, Schrimpf D et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678. doi: 10.1007/s00401-015-1405-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33(9):1015–1022. doi: 10.1200/jco.2014.58.3922 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tabouret E, Bequet C, Denicolai E, Barrie M, Nanni I, Metellus P, Dufour H, Chinot O et al (2015) BRAF mutation and anaplasia may be predictive factors of progression-free survival in adult pleomorphic xanthoastrocytoma. Eur J Surg Oncol 41(12):1685–1690. doi: 10.1016/j.ejso.2015.09.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang RQ, Shi Z, Chen H, Chung NY, Yin Z, Li KK, Chan DT, Poon WS et al (2016) Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget 7(4):5030–5041. doi: 10.18632/oncotarget.5456 PubMedGoogle Scholar
  21. 21.
    Park C-K, Lee S-H, Kim JY, Kim JE, Kim TM, Lee S-T, Choi SH, Park S-H et al (2014) Expression level of hTERT is regulated by somatic mutation and common single nucleotide polymorphism at promoter region in glioblastoma. Oncotarget 5(10):3399–3407CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, Tanaka S, Mukasa A et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 4(1):79. doi: 10.1186/s40478-016-0351-2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. doi: 10.1016/j.ccr.2006.02.019 CrossRefPubMedGoogle Scholar
  25. 25.
    Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5(6):1515–1525PubMedPubMedCentralGoogle Scholar
  26. 26.
    Heidenreich B, Rachakonda PS, Hosen I, Volz F, Hemminki K, Weyerbrock A, Kumar R (2015) TERT promoter mutations and telomere length in adult malignant gliomas and recurrences. Oncotarget 6(12):10617–10633. doi: 10.18632/oncotarget.3329 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chan AK, Yao Y, Zhang Z, Shi Z, Chen L, Chung NY, Liu JS, Li KK et al (2015) Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget 6(25):20885–20901. doi: 10.18632/oncotarget.4928 PubMedPubMedCentralGoogle Scholar
  28. 28.
    Nguyen HN, Lie A, Li T, Chowdhury R, Liu F, Ozer B, Wei B, Green RM et al (2016) Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro-oncologyGoogle Scholar
  29. 29.
    Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14(7):455–467. doi: 10.1038/nrc3760 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Huy Gia Vuong
    • 1
  • Ahmed M. A. Altibi
    • 2
  • Uyen N. P. Duong
    • 3
  • Hanh T. T. Ngo
    • 4
  • Thong Quang Pham
    • 1
  • Kar-Ming Fung
    • 5
  • Lewis Hassell
    • 5
  1. 1.Department of PathologyCho Ray HospitalHo Chi Minh CityVietnam
  2. 2.Faculty of MedicineUniversity of JordanAmmanJordan
  3. 3.Pham Ngoc Thach University of MedicineHo Chi Minh CityVietnam
  4. 4.Department of PathologyUniversity of Medicine and PharmacyHo Chi Minh cityVietnam
  5. 5.Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations