Skip to main content

Advertisement

Log in

S6K Promotes Dopaminergic Neuronal Differentiation Through PI3K/Akt/mTOR-Dependent Signaling Pathways in Human Neural Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has recently been reported that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates neuronal differentiation of neural stem cells (NSCs) derived from rats or mice and is essential for the self-renewal of human embryonic stem cells (hESCs). However, the roles of PI3K/Akt/mTOR signaling pathways during proliferation and dopaminergic neuronal differentiation of human neural stem cells (hNSCs) are poorly understood. In this study, we examined the effect of regulation of these intracellular signaling pathways in hNSCs on the potential to maintain proliferation and induce dopaminergic neuronal differentiation. Dopaminergic neuronal differentiation depended on the concentration of insulin in our culture system. Inhibition of PI3K/Akt with LY294002 reduced proliferation and inhibited dopaminergic neuronal differentiation of these cells. We also found that rapamycin, a specific inhibitor of mTOR, significantly reduced neuronal differentiation without affecting proliferation. Inhibition of the Akt/mTOR signaling pathway led to inhibition of p70 ribosomal S6 kinase (S6K) signaling, which reduced dopaminergic neuronal differentiation in hNSCs. Inhibition of S6K by a specific chemical inhibitor, PF-4708671 inhibited dopaminergic neuronal differentiation of hNSCs. As expected, transduction with a dominant negative S6K1 (S6K1-DN) construct impaired dopaminergic neuronal differentiation of hNSCs. Conversely, overexpression of constitutively active S6K1 (S6K1-CA) promoted dopaminergic neuronal differentiation of these cells. In a survival study, 4 weeks after transplantation, no or very few donor cells were viable in striata grafted with S6K1-DN-transduced hNSCs. In contrast, S6K1-CA-transduced hNSCs survived, integrated into striata to generate tubular masses of grafts and differentiated toward TH-positive cells. Taken together, these data demonstrated that insulin promotes dopaminergic neuronal differentiation through a PI3K/Akt/mTOR-dependent pathway and that S6K plays a critical role in dopaminergic neuronal differentiation in hNSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69:745–749

    Article  CAS  PubMed  Google Scholar 

  2. Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  CAS  PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  4. Bateman JM, McNeill H (2006) Insulin/IGF signalling in neurogenesis. Cell Mol Life Sci 63:1701–1705

    Article  CAS  PubMed  Google Scholar 

  5. Bondy CA, Werner H, Roberts CT Jr, LeRoith D (1990) Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol 4:1386–1398

    Article  CAS  PubMed  Google Scholar 

  6. McCurdy RD, Feron F, McGrath JJ, Mackay-Sim A (2005) Regulation of adult olfactory neurogenesis by insulin-like growth factor-I. Eur J Neurosci 22:1581–1588

    Article  PubMed  Google Scholar 

  7. Havrankova J, Schmechel D, Roth J, Brownstein M (1978) Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75:5737–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20:2896–2903

    CAS  PubMed  Google Scholar 

  9. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107:603–613

    Article  CAS  PubMed  Google Scholar 

  10. Otaegi G, Yusta-Boyo MJ, Vergano-Vera E, Mendez-Gomez HR, Carrera AC, Abad JL, Gonzalez M, de la Rosa EJ et al (2006) Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. J Cell Sci 119:2739–2748

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X et al (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39:118–124

    Article  CAS  PubMed  Google Scholar 

  12. Gingras AC, Raught B, Sonenberg N (2001) Control of translation by the target of rapamycin proteins. Prog Mol Subcell Biol 27:143–174

    Article  CAS  PubMed  Google Scholar 

  13. Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A 98:7037–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato A, Sunayama J, Matsuda K, Tachibana K, Sakurada K, Tomiyama A, Kayama T, Kitanaka C (2010) Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR. Neurosci Lett 470:115–120

    Article  CAS  PubMed  Google Scholar 

  15. Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne MC et al (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A 106:7840–7845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fishwick KJ, Li RA, Halley P, Deng P, Storey KG (2010) Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 338:215–225

    Article  CAS  PubMed  Google Scholar 

  17. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 95:7772–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    CAS  PubMed  Google Scholar 

  19. Easley CA, Ben-Yehudah A, Redinger CJ, Oliver SL, Varum ST, Eisinger VM, Carlisle DL, Donovan PJ et al (2010) mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram 12:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY et al (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121:2326–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  CAS  PubMed  Google Scholar 

  22. Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS et al (2004) Akt-1 expression level regulates CNS precursors. J Neurosci 24:8531–8541

    Article  Google Scholar 

  23. Abercrombie M (1946) Estimation of nuclear populations from microtome-sections. Anat Rec 94:239–247

    Article  CAS  PubMed  Google Scholar 

  24. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872

    Article  CAS  PubMed  Google Scholar 

  25. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14:717–730

    Article  CAS  PubMed  Google Scholar 

  26. Cheng HL, Feldman EL (1998) Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. J Biol Chem 273:14560–14565

    Article  CAS  PubMed  Google Scholar 

  27. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  Google Scholar 

  28. Sinor AD, Lillien L (2004) Akt-1 expression level regulates CNS precursors. J Neurosci 24:8531–8541

    Article  CAS  PubMed  Google Scholar 

  29. Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M et al (2005) Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 25:1869–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, Michaelis T, Frahm J et al (2005) Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132:2943–2954

    Article  CAS  PubMed  Google Scholar 

  31. Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29:6860–6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bateman JM, McNeill H (2004) Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119:87–96

    Article  CAS  PubMed  Google Scholar 

  33. Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–1026

    Article  CAS  PubMed  Google Scholar 

  34. Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–11312

    Article  CAS  PubMed  Google Scholar 

  35. Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25:11288–11299

    Article  CAS  PubMed  Google Scholar 

  36. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chuang JH, Tung LC, Yin Y, Lin Y (2013) Differentiation of glutamatergic neurons from mouse embryonic stem cells requires raptor S6K signaling. Stem Cell Res 11:1117–1128

    Article  CAS  PubMed  Google Scholar 

  38. D’Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P et al (2009) G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 105:231–238

    Article  PubMed  Google Scholar 

  39. Li L, Larabee SM, Chen S, Basiri L, Yamaguchi S, Zakaria A, Gallicano GI (2012) Novel 5′TOPmRNAs regulated by ribosomal S6 kinase are important for cardiomyocyte development: S6 kinase suppression limits cardiac differentiation and promotes pluripotent cells toward a neural lineage. Stem Cells Dev 21:1538–1548

    Article  CAS  PubMed  Google Scholar 

  40. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S et al (2004) S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A120524).

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Hwan Park or Hyun Chul Koh.

Additional information

Jeong Eun Lee and Mi Sun Lim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.E., Lim, M.S., Park, J.H. et al. S6K Promotes Dopaminergic Neuronal Differentiation Through PI3K/Akt/mTOR-Dependent Signaling Pathways in Human Neural Stem Cells. Mol Neurobiol 53, 3771–3782 (2016). https://doi.org/10.1007/s12035-015-9325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9325-9

Keywords

Navigation