Skip to main content
Log in

Association Between PARP1 Single Nucleotide Polymorphism and Brain Tumors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To systematically evaluate the association between poly(ADP-ribose) polymerase 1 (PARP1) rs1136410 T>C and brain tumor risk, a meta-analysis has been carried out. We performed a meta-analysis of 2004 brain tumor patients and 2944 controls by use of STATA version 12.0 to determine whether the risk of brain tumors was associated with the genotypes or alleles of rs1136410 T>C. We found a significantly decreased risk (ranging from 0.18- to 0.16-fold) in the dominant model (OR = 0.84, 95 % CI = 0.75–0.95), the C vs. T model (OR = 0.82, 95 % CI = 0.74–0.91), and the CT vs. TT model (OR = 0.86, 95 % CI = 0.76–0.98). The same genetic models demonstrated noteworthy associations when analysis was restrained to glioma (OR = 0.85, 95 % CI = 0.75–0.96; OR = 0.83, 95 % CI = 0.74–0.92; OR = 0.87, 95 % CI = 0.76–0.99, respectively). This meta-analysis suggests that PARP1 rs1136410 T>C may play a significant role in the protection against the development of brain tumors and glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bondy ML, Scheurer ME, Malmer B et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113(7 Suppl):1953–1968

    Article  PubMed  PubMed Central  Google Scholar 

  2. Momiyama M, Suetsugu A, Kimura H et al (2013) Imaging the efficacy of UVC irradiation on superficial brain tumors and metastasis in live mice at the subcellular level. J Cell Biochem 114(2):428–434

    Article  CAS  PubMed  Google Scholar 

  3. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clinical Pract Neuro 2(9):494–503, quiz 491 p following 516

    Article  Google Scholar 

  4. Qin LY, Zhao LG, Chen X, Li P, Yang Z, Mo WN (2014) The CCND1 G870A gene polymorphism and brain tumor risk: a meta-analysis. Asia Pac J Cancer Prev : APJCP 15(8):3607–3612

    Article  Google Scholar 

  5. Zhou P, Wei L, Xia X, Shao N, Qian X, Yang Y (2014) Association between telomerase reverse transcriptase rs2736100 polymorphism and risk of glioma. J Surg Res

  6. Xin Y, Hao S, Lu J, Wang Q, Zhang L (2014) Association of ERCC1 C8092A and ERCC2 Lys751Gln polymorphisms with the risk of glioma: a meta-analysis. PLoS ONE 9(4):e95966

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shete S, Hosking FJ, Robertson LB et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wrensch M, Jenkins RB, Chang JS et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tudek B (2007) Base excision repair modulation as a risk factor for human cancers. Mol Asp Med 28(3–4):258–275

    Article  CAS  Google Scholar 

  10. Gossage L, Perry C, Abbotts R, Madhusudan S (2012) Base excision repair factors are promising prognostic and predictive markers in cancer. Curr Mol Pharmacol 5(1):115–124

    Article  CAS  PubMed  Google Scholar 

  11. Kothandapani A, Sawant A, Dangeti VS, Sobol RW, Patrick SM (2013) Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity. Nucleic Acids Res 41(15):7332–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malanga M, Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochim Biol Cell 83(3):354–364

    Article  CAS  Google Scholar 

  13. Guerrero-Preston R, Hadar T, Ostrow KL et al (2014) Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep 32(2):505–512

    PubMed  PubMed Central  Google Scholar 

  14. Schuler N, Palm J, Kaiser M et al (2014) DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies. PLoS ONE 9(3):e91319

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lockett KL, Hall MC, Xu J et al (2004) The ADPRT V762 Agenetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64(17):6344–6348

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Miao X, Liang G et al (2005) Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 65(3):722–726

    CAS  PubMed  Google Scholar 

  17. Liu Y, Scheurer ME, El-Zein R et al (2009) Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomark Prev : Publ Am Assoc Cancer Res cosponsored by the Am Soc Prev Oncol 18(1):204–214

    Article  CAS  Google Scholar 

  18. Rajaraman P, Hutchinson A, Wichner S et al (2010) DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro-Oncology 12(1):37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, Kanigur-Sultuybek G (2010) Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. Br J Neurosurg 24(5):561–565

    Article  PubMed  Google Scholar 

  20. McKean-Cowdin R, Barnholtz-Sloan J, Inskip PD et al (2009) Associations between polymorphisms in DNA repair genes and glioblastoma. Cancer Epidemiol, Biomark Prev : Publ Am Assoc Cancer Res, cosponsored by the Am Soc Prev Oncol 18(4):1118–1126

    Article  CAS  Google Scholar 

  21. Wells GA, Shea B, OʼConnell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  22. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  23. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  24. Wg C (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  25. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA: Cancer J Clin 59(4):225–249

    Google Scholar 

  27. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108

    Article  PubMed  Google Scholar 

  28. China NBoSo. China’s Health Statistics Yearbook 2009 [in Chinese]. Peking, China: Peking Union Medical College Press; 2009:254. (http://www.moh.gov.cn/publicfiles/business/htmlfiles/zwgkzt/ptjnj/year2009/t-9.htm). 2010

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, K., Qin, H. et al. Association Between PARP1 Single Nucleotide Polymorphism and Brain Tumors. Mol Neurobiol 53, 2083–2089 (2016). https://doi.org/10.1007/s12035-015-9168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9168-4

Keywords

Navigation