Skip to main content

Advertisement

Log in

Mitochondrial Complex Enzyme Activities and Cytochrome c Expression Changes in Multiple Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Blood platelets have been widely proposed as biomarkers in studies of mitochondrial function and aging-related and neurodegenerative diseases. Defects in mitochondrial function were found not only in the substantia nigra of Parkinson’s disease patients but also in their blood platelets. Similarly, it has also been described in the blood platelet mitochondria of Alzheimer’s disease patients. To study mitochondrial aerobic metabolism function and protein expression in platelets of multiple sclerosis (MS) patients and control subjects, mitochondrial aconitase, mitochondrial superoxide dismutases 1 and 2 (SOD1 and SOD2), and respiratory complex enzyme activities in platelets of MS patients and control subjects were determined. Likewise, mitochondrial lipid peroxidation and mitochondrial SOD1 and cytochrome c expressions were investigated. Mitochondrial aconitase activity was higher in MS patients than in controls (P < 0.05). A significant increase on all respiratory complex activities in MS patients was observed (P < 0.05). Mitochondrial lipid peroxidation was significantly higher in MS patients than in controls (P < 0.05). Significant changes of cytochrome c and mitochondrial SOD1 expressions were detected (P < 0.05), with a decrease of 44 ± 5 % and an increase of 46 ± 6 %, respectively. Our study reveals that significant changes in mitochondrial aerobic metabolism function and mitochondrial SOD1 and cytochrome c expressions are produced in platelets of MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  2. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  PubMed  Google Scholar 

  3. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  CAS  PubMed  Google Scholar 

  4. Zambonin JL, Zhao C, Ohno N, Campbell GR, Engeham S, Ziabreva I, Schwarz N, Lee SE, Frischer JM, Turnbull DM, Trapp BD, Lassmann H, Franklin RJ, Mahad DJ (2011) Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134:1901–1913

    Article  PubMed  Google Scholar 

  5. Witte ME, Lars BO, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, van der Valk P, van Horssen J (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 19:193–204

    Article  Google Scholar 

  6. Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    Article  CAS  PubMed  Google Scholar 

  7. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  CAS  PubMed  Google Scholar 

  8. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  9. Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    Article  CAS  PubMed  Google Scholar 

  10. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR (2004) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 25:105–110

    Article  CAS  PubMed  Google Scholar 

  12. Valla J, Schneider L, Niedzielko T, Coon KD, Caselli R, Sabbagh MN, Ahern GL, Baxter L, Alexander G, Walker DG, Reiman EM (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6:323–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Debouverie M, Pittion-Vouyovitch S, Brissart H, Guillemin F (2008) Physical dimension of fatigue correlated with disability change over time in patients with multiple sclerosis. J Neurol 255:633–636

    Article  PubMed  Google Scholar 

  14. Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32:782–788

    Article  CAS  PubMed  Google Scholar 

  15. Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  PubMed  Google Scholar 

  16. Drapier JC, Hibbs JB Jr (1996) Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol 269:26–36

    Article  CAS  PubMed  Google Scholar 

  17. Ukeda H, Maeda S, Ishii T, Sawamura M (1997) Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-1-(phenylamino)-carbonyl-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine–xanthine oxidase. Anal Biochem 251:206–209

    Article  CAS  PubMed  Google Scholar 

  18. Ragan CI (1990) Structure and function of an archetypal respiratory chain complex: NADH-ubiquinone reductase. Biochem Soc Trans 18:515–516

    CAS  PubMed  Google Scholar 

  19. Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32:415–438

    Article  CAS  PubMed  Google Scholar 

  20. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN (1987) Subfractionation of mitochondria, and isolation of the proteins of oxidative phosphorylation. In: Darley-Usma VM, Rickwood D, Wilson MT (eds) Mitochondria, a practical approach. IRL Press, London, pp 79–112

    Google Scholar 

  21. Wharton DC, Tzagotoff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  22. Gassner B, Wüthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    CAS  PubMed  Google Scholar 

  23. Hong YL, Yeh SL, Chang CY, Hu ML (2000) Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clin Biochem 33:619–625

    Article  CAS  PubMed  Google Scholar 

  24. Bianchi C, Genova ML, Parenti CG, Lenaz G (2004) The mitochondrial respirator chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  CAS  PubMed  Google Scholar 

  25. Kunz WS (2003) Different metabolic properties of mitochondrial oxidative phosphorylation in different cell types—important implications for mitochondrial cytopathies. Exp Physiol 88:149–154

    Article  CAS  PubMed  Google Scholar 

  26. Haller RG, Henriksson KG, Jorfeldt L, Hultman E, Wibom R, Sahlin K, Areskog NH, Gunder M, Ayyad K et al (1991) Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. J Clin Invest 88:1197–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kollberg G, Tulinius M, Melberg A, Darin N, Andersen O, Holmgren D, Oldfors A, Holme E (2009) Clinical manifestation and a new ISCU mutation in iron–sulphur cluster deficiency myopathy. Brain 132:2170–2179

    Article  PubMed  Google Scholar 

  28. Andersson U, Leighton B, Young ME, Blomstrand E, Newsholme EA (1998) Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem Biophys Res Commun 249:512–516

    Article  CAS  PubMed  Google Scholar 

  29. Bykova NV, Egsgaard H, Moller IM (2003) Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540:141–146

    Article  CAS  PubMed  Google Scholar 

  30. Eisenstein RS, Tuazon PT, Schalinske KL, Anderson SA, Traugh JA (1993) Iron-responsive element-binding protein. Phosphorylation by protein kinase C. J Biol Chem 268:27363–27370

    CAS  PubMed  Google Scholar 

  31. Marracci GH, Jones RE, McKeon GP, Bourdette DN (2002) Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 131:104–114

    Article  CAS  PubMed  Google Scholar 

  32. Ghazavi A, Kianbakht S, Ghasami K, Mosayebi G (2012) High copper and low zinc serum levels in Iranian patients with multiple sclerosis: a case control study. Clin Lab 58:161–164

    CAS  PubMed  Google Scholar 

  33. Gybina AA, Prohaska JR (2003) Increased rat brain cytochrome c correlates with degree of perinatal copper deficiency rather than apoptosis. J Nutr 133:3361–3368

    CAS  PubMed  Google Scholar 

  34. Mao S, Medeiros DM (2001) Nuclear respiratory factors 1 and 2 are upregulated in hearts from copper-deficient rats. Biol Trace Elem Res 83:57–68

    Article  CAS  PubMed  Google Scholar 

  35. Vidalino L, Doria A, Quarta S, Zen M, Gatta A, Pontisso P (2009) SERPINB3, apoptosis and autoimmunity. Autoimmun Rev 9:108–112

    Article  CAS  PubMed  Google Scholar 

  36. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    Article  CAS  PubMed  Google Scholar 

  37. Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109:S97–S107

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Iñarrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iñarrea, P., Alarcia, R., Alava, M.A. et al. Mitochondrial Complex Enzyme Activities and Cytochrome c Expression Changes in Multiple Sclerosis. Mol Neurobiol 49, 1–9 (2014). https://doi.org/10.1007/s12035-013-8481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8481-z

Keywords

Navigation