Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural, mechanical and optoelectronic properties of cubic \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {S}, \hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Se}\) and \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Te}\) semiconductor ternary alloys: a density functional study

  • 23 Accesses

Abstract

Structural, mechanical and optoelectronic features of cubic \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {S}, \hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Se}\) and \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Te}\) alloys have been explored by DFT-based FP-LAPW approach. Nonlinear reduction in lattice constant, but increment in bulk modulus and each of the elastic constants \(C_{11}\), \(C_{12}\) and \(C_{44}\), occurs with increasing Be-concentration x in each system. All the specimens exhibit elastic anisotropy. Specimens at \(x= 0.0\), 0.25 and 0.50 show ductility, but remaining specimens at \(x= 0.75\) and 1.0 show brittleness. Each ternary alloy is a direct (\(\Gamma {-}\Gamma \)) band gap (\(E_{\mathrm{g}})\) semiconductor. Almost linear decrease in \(E_{\mathrm{g}}\) with increase in x is observed in each alloy system. Ionic bonding exists among the constituents of all specimens. The occupied valence chalcogen-p as initial and unoccupied conduction Be-3s, 2p and Mg-4s, 3p as final states play a key role in optical transitions. Nature of variation of zero-frequency limit in each of the \(\varepsilon _{1} (\omega )\), \(n(\omega )\) and \(R(\omega )\) spectra with x is opposite to, while critical point in each of the \(\varepsilon _{2} (\omega )\), \(k(\omega )\), \(\sigma (\omega )\) and \(\alpha (\omega )\) spectra with x is similar to, the nature of variation of \(E_{\mathrm {g}}\) with x.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Peiris S M, Campbell A J and Heinz D L 1994 J. Phys. Chem. Solids55 413

  2. 2.

    Ruoff A L, Li T, Ho A C, Pai M F, Luo H, Greene R G et al 1998 Phys. Rev. Lett.81 2723

  3. 3.

    Li T, Luo H, Greene R G, Ruoff A L, Trail S S and DiSalvo F J 1995 Phys. Rev. Lett.74 5232

  4. 4.

    Konczenwicz L, Bigenwal P, Cloitre T, Chibane M, Ricou R, Testuo P et al 1996 J. Cryst. Growth159 117

  5. 5.

    Okuyama H, Nakano K, Miyajima T and Akimoto K 1992 J. Cryst. Growth117 139

  6. 6.

    Waag A, Heinke H, Scholl S, Becker C R and Landwehr G 1993 J. Cryst. Growth131 607

  7. 7.

    Wang M W, Phillips M C, Swenberg J F, Yu E T, McCaldin J O and McGill T C 1993 J. Appl. Phys.73 4660

  8. 8.

    Wang M W, Swenberg J F, Phillips M C, Yu E T, McCaldin J O, Grant R W et al 1994 Appl. Phys. Lett.64 3455

  9. 9.

    Albin S, Satira J D, Livingston D L and Shull T A 1992 Jpn. J. Appl. Phys.31 715

  10. 10.

    Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett.69 97

  11. 11.

    Watanabe K, Litz M T, Korn M, Ossau W, Waag A, Landwehr G et al 1997 J. Appl. Phys.81 451

  12. 12.

    Asano T, Funato K, Nakamura F and Ishibashi A 1995 J. Cryst. Growth156 373

  13. 13.

    Liu X, Bindley U, Sasaki Y and Furdyna J K 2002 J. Appl. Phys.91 2859

  14. 14.

    Litz M T, Watanabe K, Korn M, Ress H, Lunz U, Ossau W et al 1996 J. Cryst. Growth159 54

  15. 15.

    Furdyna J K, Dobrowolska M and Luo H 1996 Encyclopaedia Appl. Phys.17 373

  16. 16.

    Van Camp P E, Doren V E V and Martins J L 1997 Phys. Rev. B55 775

  17. 17.

    Drief F, Tadjer A, Mesri D and Aourag H 2004 Catal. Today89 343

  18. 18.

    Duman S, Bagci S, Tutuncu H M and Srivastava G P 2006 Phys. Rev. B73 205201

  19. 19.

    Durandurdu M 2009 J. Phys. Condens. Matter21 452204

  20. 20.

    Lee S G and Chang K J 1995 Phys. Rev. B52 1918

  21. 21.

    Tairi L, Touam S, Boumaza A, Boukhtouta M, Meradji H, Ghemid S et al 2017 Phase Transit. https://doi.org/10.1080/01411594.2017.1302085

  22. 22.

    Chakrabarti A 2000 Phys. Rev. B62 1806

  23. 23.

    Xu-Dong Z, Zhi-Jie L and Gui-Mei S 2012 Commun. Theor. Phys.57 295

  24. 24.

    Gokoglu C, Durandurdu M and Gulseren O 2009 Comput. Mat. Sci.47 593

  25. 25.

    Rached D, Benkhettou N, Soudini B, Abbar B, Sekkal N and Driz M 2003 Phys. Status Solidi B240 565

  26. 26.

    Kalpana G, Palanivel B, Thomas R M and Rajagopalan M 1996 Physica B222 223

  27. 27.

    Fleszar A 2001 Phys. Rev. B62 245204

  28. 28.

    Zachariasen W 1926 Z. Phys. Chem.119 210

  29. 29.

    Narayana C, Nesamony V J and Ruoff A L 1997 Phys. Rev. B56 14338

  30. 30.

    Luo H, Chandehari K, Green R G, Ruoff A L, Trailand S S and DiSalvo F J 1995 Phys. Rev. B52 7058

  31. 31.

    Van Vechten J A 1969 Phys. Rev.187 1007

  32. 32.

    Yim W M, Dismukes J P, Stofko E J and Paff R J 1972 J. Phys. Chem. Solids33 501

  33. 33.

    Waag A, Fischer F, Lugauer H J, Litz T, Laubender J, Lunz U et al 1996 J. Appl. Phys.80 792

  34. 34.

    Wilmers K, Wethkamp T, Esser N, Cobet C, Richter W, Cardona M et al 1999 Phys. Rev. B59 10071

  35. 35.

    Wilmers K, Wethkamp T, Esser N, Cobet C, Richter W, Wagner V et al 1999 J. Electron. Mater.28 670

  36. 36.

    Wagner V, Liang J J, Kruse R, Gundel S, Kleim M, Waag A et al 1999 Phys. Status Solidi B215 87

  37. 37.

    Stukel D J 1970 Phys. Rev. B2 1852

  38. 38.

    Sarkar R L and Chatterjee S 1977 J. Phys. C: Solid State Phys.10 57

  39. 39.

    Munoz A, Rordguez-Hernandez P and Mujica A 1996 Phys. Status Solidi198 439

  40. 40.

    Munoz A, Rordguez-Hernandez P and Mujica A 1996 Phys. Rev. B54 11861

  41. 41.

    Gonzalez-Diaz M, Rodriguez-Hernandez P and Munoz A 1997 Phys. Rev. B55 14043

  42. 42.

    Kalpana G, Pari G, Mookerjee A and Bhattacharyya A K 1998 Int. J. Mod. Phys. B12 1975

  43. 43.

    Benosman N, Amrane N, Mecabih S and Aourag H 2001 Physica B304 214

  44. 44.

    Srivastava G P, Tutuncu H M and Gunhan N 2004 Phys. Rev. B70 85206

  45. 45.

    Okoye C M I 2004 Eur. Phys. J. B39 5

  46. 46.

    El Haj H F and Akbarzadeh H 2006 Comput. Mater. Sci.35 423

  47. 47.

    Berghout A, Zaoui A and Hugel J 2006 J. Phys. Condens. Matter18 10365

  48. 48.

    Khenata R, Bouhemadou A, Hichour M, Baltache H, Rached D and Rerat M 2006 Solid-State Electron.50 1382

  49. 49.

    Heciri D, Beldi L, Drablia S, Meradji H, Derradji N E, Belkhir H et al 2007 Comput. Mater. Sci.38 609

  50. 50.

    Yadav P S, Yadav R K, Agrawal S and Agrawal B K 2007 Physica E36 79

  51. 51.

    Munjal N, Sharma V, Sharma G, Vyas V, Sharma B K and Lowther J E 2011 Phys. Scr.84 035704

  52. 52.

    Thapa R K, Sandeep M P, Ghimire M P and Lalmuanpuia 2011 Indian J. Phys.85 727

  53. 53.

    Hai-Jun H and Fan-jie K 2011 Comput. Mater. Sci.50 1437

  54. 54.

    Al-Douri Y, Baaziz H, Charifib Z and Reshak Ali H 2012 Physica B407 286

  55. 55.

    Elias B H 2013 Int. J. Innov. Res. Sci. Eng. Technol.2 4193

  56. 56.

    Dutta R, Alptekin S and Mandal N 2013 J. Phys. Condens. Matter25 125401

  57. 57.

    Guo L, Hu G, Zhang S, Feng W and Zhang Z 2013 J. Alloys Compd.561 16

  58. 58.

    Yu Y, Liu D, Chen J, Ji J and Long J 2014 Solid State Sci.28 35

  59. 59.

    Mameria Z, Zaouib A, Belabbesa A and Ferhata M 2010 J. Mater. Chem. Phys.123 343

  60. 60.

    Rai D P, Ghimire M P and Thapa R K 2014 Semiconductors48 1411

  61. 61.

    Rached D, Rabah M, Benkhettou N, Khenata R, Soudini B, Al-Douri Y et al 2006 Comput. Mater. Sci.37 292

  62. 62.

    Yu Y, Liu D, Chen J, Ji J and Long J 2014 Philos. Mag. Lett.94 103

  63. 63.

    Ji X, Yu Y, Ji J, Long J, Chen J and Liu D 2015 J. Alloys Compd.623 304

  64. 64.

    Kitamura M and Muramatsu S 1992 Phys. Rev. B46 1351

  65. 65.

    Lee H, In-Young K, Powell J, Aspnes D E, Lee S, Peiris F et alJ. Appl. Phys.88 878

  66. 66.

    Kuskovsky I, Tian C, Sudbrack C, Neumark G F, Guo S P and Tamargo M C 2000 J. Cryst. Growth214 335

  67. 67.

    Bousquet V, Tournie E, Laugt M, Vennegues P and Faurie J P 1997 Appl. Phys. Lett.70 3564

  68. 68.

    Zhang J Y, Shen D Z, Fan X W, Yang B J and Zhang Z H 2000 J. Cryst. Growth214–215 100

  69. 69.

    Waag A, Fischer F, Schüll K, Baron T, Lugauer H J, Litz T et al 1997 Appl. Phys. Lett.70 280

  70. 70.

    Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B57 2257

  71. 71.

    Bouamama K and Djemia P 2007 Mod. Phys. Lett. B21 249

  72. 72.

    Hassan F E H and Amrani B 2007 J. Phys. Condens Matter19 386234

  73. 73.

    Sajid A, Afaq A and Murtaza G 2013 Chin. J. Phys.51 316

  74. 74.

    Noor N A and Shaukat A 2012 Int. J. Mod. Phys. B26 1250168

  75. 75.

    Ullah N, Murtaza G, Khenata R, Rehman J, Uddin H and Bin O S 2014 Mater. Sci. Semicond. Process.26 681

  76. 76.

    Sajjad M, Zhang H X, Noor N A, Alay-e-Abbas S M, Younas M, Abid M et al 2014 J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-014-2593-1

  77. 77.

    Khan I, Subhan F, Ahmad I and Ali Z 2015 J. Phys. Chem. Solids83 75

  78. 78.

    Hassan F E H 2005 Phys. Status Solidi B242 909

  79. 79.

    Baaziz H, Charifi Z, Hassan F E H, Hashemifar S J and Akbarzadeh H 2006 Phys. Status Solidi B243 1296

  80. 80.

    Hacini K, Ghemid S, Meradji H and Hassan F E H 2011 Comput. Mater. Sci.50 3080

  81. 81.

    Alay-e-Abbas S M, Wong K M, Noor N A, Shaukat A and Lei Y 2012 Solid State Sci.14 1525

  82. 82.

    Mokaddem A, Doumi B, Sayede A, Bensaid D, Tadjer A and Boutaleb M 2015 J. Supercond. Nov. Magn.28 157

  83. 83.

    Noor N A, Tahir W, Aslam F and Shaukat A 2012 Physica B407 943

  84. 84.

    Bensaid D, Ameri M, Benseddik N, Mir A, Bouzouira N E and Benzoudji F 2014 Int. J. Met. https://doi.org/10.1155/2014/286393

  85. 85.

    Sabir B, Noor N A, Rashid M, Ud Din F, Ramay S M and Mahmood A 2018 Chin. Phys. B27 016101

  86. 86.

    Blaha P, Schwarz K, Sorantin P and Trickey S K 1990 Comput. Phys. Commun.59 339

  87. 87.

    Blaha P, Schwarz K, Madsen G H, Kbasnicka D and Luitz J 2001 WIEN2K: FP-LAPW \(+\)lo program for calculating crystal properties (Austria: Techn. Universitä at Wien)

  88. 88.

    Hohenberg P and Kohn W 1964 Phys. Rev. B136 864

  89. 89.

    Kohn W and Sham L J 1965 Phys. Rev.140 A1133

  90. 90.

    Andersen O K 1975 Phys. Rev. B42 3063

  91. 91.

    Jamal M, Asadabadi S J, Ahmad I and Aliabad H A R 2014 Comput. Mater. Sci.95 592

  92. 92.

    Wu Z and Cohen E R 2006 Phys. Rev. B73 235116

  93. 93.

    Tran F and Blaha P 2009 Phys. Rev. Lett.102 226401

  94. 94.

    Engel E and Vosko S H 1993 Phys. Rev. B47 13164

  95. 95.

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865

  96. 96.

    Kokalj A 2003 Comput. Mater. Sci.28 155

  97. 97.

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA30 244

  98. 98.

    Vegard L 1921 Z. Phys.5 17

  99. 99.

    Dismukes J P, Ekstrom L and Paff R J 1964 J. Phys. Chem.68 3021

  100. 100.

    Born M 1940 Math. Proc. Camb. Phil. Soc.36 160

  101. 101.

    Born M and Huang K 1954 Dynamical theory of crystal lattices (UK: Oxford University Press)

  102. 102.

    Jamal M, Sarvestani N K, Yazdani A and Reshak A H 2014 RSC Adv.4 57903

  103. 103.

    Voigt W 1889 Ann. Phys.38 573

  104. 104.

    Reuss A and Angew Z 1929 Math. Phys.9 49

  105. 105.

    Hill R 1952 Proc. Phys. Soc. London A65 349

  106. 106.

    Pugh S F 1954 Philos. Mag.45 823

  107. 107.

    Pettifor D G 1992 Mater. Sci. Technol.8 345

  108. 108.

    Kleinman L 1962 Phys. Rev.128 2614

  109. 109.

    Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) p 60

  110. 110.

    Teter D 1998 MRS Bull.23 22

  111. 111.

    Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics19 1275

  112. 112.

    Fox M 2001 Optical properties of solids (UK: Oxford University Press)

  113. 113.

    Bernard J E and Zunger A 1986 Phys. Rev. B34 5992

  114. 114.

    Sifi C, Meradrji H, Silmani M, Labidi S, Ghemid S, Hanneche E B et al 2009 J. Phys. Condens. Matter21 195401

  115. 115.

    Dadsetani M and Pourghazi A 2006 Phys. Rev. B73 195102

  116. 116.

    Penn D R 1962 Phys. Rev.128 2093

Download references

Acknowledgements

The authors are highly grateful to the Authority of Tripura University for all the necessary facilities and funding to carry out the research work.

Author information

Correspondence to Surya Chattopadhyaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 7390 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Debbarma, M., Ghosh, D. et al. Structural, mechanical and optoelectronic properties of cubic \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {S}, \hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Se}\) and \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Te}\) semiconductor ternary alloys: a density functional study. Bull Mater Sci 43, 59 (2020). https://doi.org/10.1007/s12034-019-2006-y

Download citation

Keywords

  • \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {S}, \hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Se}\) and \(\hbox {Be}_{x}\hbox {Mg}_{1-x}\hbox {Te}\) alloys
  • DFT-based FP-LAPW methodology
  • WC-GGA, mBJ and EV-GGA functional
  • structural and elastic features
  • electronic and optical characteristics