Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of \({\hbox {Bi}}_{2} {\hbox {O}}_{3}\), \({\hbox {Sb}}_{2} \hbox {O}_{3}\) and \({\hbox {Y}}_{2} {\hbox {O}}_{3}\) on optical properties of \({\hbox {Er}}_{2} {\hbox {O}}_{3}\)-doped \(\hbox {CaO}\)\({\hbox {P}}_{2} {\hbox {O}}_{5} \)\( {\hbox {B}}_{2} {\hbox {O}}_{3}\) glasses


The glasses of the composition \(25\hbox {CaO}\)\(10({\hbox {M}}_{2} {\hbox {O}}_{3})\)\(14{\hbox {P}}_{2} {\hbox {O}}_{5}\)\( 50{\hbox {B}}_{2} {\hbox {O}}_{3}{:} \! 1{\hbox {Er}}_{2} {\hbox {O}}_{3}\) (where M = Bi/Sb/Y) are prepared. The prepared samples are characterized by XRD, thermoluminescence (TL), UV and photoluminescence (PL) techniques. TL reports suggest that the sample of 10 mol% \({\hbox {Y}}_{2} {\hbox {O}}_{3}\) concentration (\(\hbox {E}_{\mathrm{Y}}\)) exhibiting good shape symmetry factor (\({{u}} = 0.484\)) and low AEs (\(E_{\tau } = 1.189\), \(E_\delta = 1.218\) and \(E_{\omega } = 1.210\)) under \(\gamma \)-irradiation might be a good TL asset. The optical absorptions of present glasses are studied well through the Judd–Ofelt theory. The evaluations such as Judd–Ofelt parameters are additionally projected. They are found to be the best (\({\Omega }_{2} = 1.62 \times 10^{-21} \, {\hbox {cm}}^{2}\), \({\Omega }_{4} = 1.56 \times 10^{-21} \, {\hbox {cm}}^{2}\) and \({\Omega }_{6} = 0.59 \times 10^{-21} \, {\hbox {cm}}^{2}\)) for the sample of 10 mol% \({\hbox {Y}}_{2} {\hbox {O}}_{3}\) concentration (\(\hbox {E}_{\mathrm{Y}}\)), which may be a good optical asset to develop a novel class of laser resources. The radiative evolutions corresponding to the emissive transition \({}^{4}{\hbox {S}}_{3/2} \rightarrow {}^{4} {\hbox {I}}_{15/2}\) are assessed by PL technique. The evaluations are found to be the best (\(A_{\mathrm{t}} = 7089 \, {\hbox {s}}^{-1}\), \(\tau _{\mathrm{rad}} = 140 \, \upmu \hbox {s}\) and \(\beta = 96.1\%\)) for the sample of 10 mol% \({\hbox {Y}}_{2} {\hbox {O}}_{3}\) concentration (\(\hbox {E}_{\mathrm{Y}}\)), which may be a useful luminescent resource.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Sanyal B, Natarajan V, Chawla S P and Sharma A 2010 Radiat. Meas. 45 899

  2. 2.

    Hashim S, Alajerami Y S M, Ramli A T, Ghoshal S K, Saleh M A, Abdul Kadir A B et al 2014 Appl. Rad. Isot. 91 126

  3. 3.

    Timar-Gabor A, Ivascu C, Vasiliniuc S, Daraban L, Ardelean I, Cosma C et al 2011 Appl. Radiat. Isot. 69 780

  4. 4.

    Clark R A, David Robertson J and Schwantes J M 2013 Radiat. Meas. 59 270

  5. 5.

    Osorio E, Gutierrez O D, Paucar C G and Hadad C Z 2009 J. Lumin. 129 657

  6. 6.

    Swamy B J R S, Sanyal B, Vijay R, Ramesh Babu P and Krishna Rao D 2014 Ceram. Int. 40 3707

  7. 7.

    Gu M, Gao Q C, Huang S M, Liu X L, Liu B and Ni C 2012 J. Lumin. 132 2531

  8. 8.

    Kir’yanov A V, Minkovich V P, Barmenkov Y O, Gamez M A M and Martinez-Rios A 2005 J. Lumin. 111 1

  9. 9.

    Ravi Kumar G, Srikumar T, Rao M C, Venkat Reddy P and Srinivasa Rao Ch 2018 Mater. Res. Exp. 5 035203

  10. 10.

    Ravi Kumar G, Srikumar T, Rao M C, Venkat Reddy P and Srinivasa Rao Ch 2018 Int. J. Light Electron Opt. 161 250

  11. 11.

    Amritphale S S, Anshul A, Chandra N and Ramakrishnan N 2007 J. Eur. Ceram. Soc. 27 4639

  12. 12.

    Venkateswara Rao G, Veeraiah N and Yadagiri Reddy P 2003 Opt. Mater. 22 295

  13. 13.

    Elkholy M M 2003 Mater. Chem. Phys. 77 321

  14. 14.

    Depci T, Ozbayoglu G and Yilmaz A 2011 J. Rare Earths 29 618

  15. 15.

    Huston A L, Justus B L and Johnson T L 1996 Appl. Phys. Lett. 68 3377

  16. 16.

    Bos A J J, Dorenbos P, Bessière A, Lecointre A, Bedu M, Bettinelli M et al 2011 Radiat. Meas. 46 1410

  17. 17.

    Raghava Rao P, Murali Krishna G, Brik M G, Gandhi Y and Veeraiah N 2011 J. Lumin. 131 212

  18. 18.

    ASTM Standard 51956 2005 (E) Standard practice for use of thermoluminescence dosimetry (TLD) systems for radiation processing

  19. 19.

    Moorthy L R, Rao T S, Jayasimhadri M, Radhapathy A and Murthy D V R 2004 Spectrochim. Acta A 60 2449

  20. 20.

    Srinivasa Rao A, Rupa B, Rao V, Prasad M V V K S, Shanmukha Kumar J V, Jayasimhadri M et al 2009 Physica B 404 3717

  21. 21.

    Walsh B M 2006 in: B Di Bartolo and O Forte (eds) Advances in spectroscopy for lasers and sensing (Amsterdam: Springer)

  22. 22.

    Al-Hilli M F, Kalid T and Al-Rasoul T 2013 Ceram. Int. 39 5855

Download references


The SNIST management is thanked for providing an internal research development project to carry out the present research work.

Author information

Correspondence to G Ravi Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.R., Rao, C.S. Influence of \({\hbox {Bi}}_{2} {\hbox {O}}_{3}\), \({\hbox {Sb}}_{2} \hbox {O}_{3}\) and \({\hbox {Y}}_{2} {\hbox {O}}_{3}\) on optical properties of \({\hbox {Er}}_{2} {\hbox {O}}_{3}\)-doped \(\hbox {CaO}\)\({\hbox {P}}_{2} {\hbox {O}}_{5} \)\( {\hbox {B}}_{2} {\hbox {O}}_{3}\) glasses. Bull Mater Sci 43, 71 (2020).

Download citation


  • Thermoluminescence
  • trap depth parameters
  • optical absorption
  • photoluminescence
  • J–O parameters