Bulletin of Materials Science

, 42:263 | Cite as

A mesoporous nickel oxide nanosheet as an electrode material for supercapacitor application using the 1-(\(2^{\prime }\),\(3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide ionic liquid electrolyte

  • S C Bhise
  • D V Awale
  • M M Vadiyar
  • S K Patil
  • U V Ghorpade
  • B N Kokare
  • J H Kim
  • S S KolekarEmail author


NiO nanosheets were deposited on the surface of a stainless steel substrate by using a facile, environmentally friendly, reflux deposition approach for supercapacitor (SC) applications. X-ray diffraction patterns and field emission scanning electron microscopy images revealed the formation of a face centred cubic crystal structure with a uniform, compact, smoothly ordered nanosheet like structure. This study focuses on the electrochemical supercapacitive properties of NiO nanosheets with respect to cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques in a 1-(\(2^{\prime }{,}3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide [DHPMIM][OH] ionic liquid (IL) as an electrolyte. The electrochemical study revealed that NiO (0.3 M) showed a high-specific capacitance of \(\hbox {205.5 F g}^{-1}\) and an excellent cycling stability (80% specific capacitance retention after 5000 cycles) in the [DHPMIM][OH] IL electrolyte. Thus, the result showed that NiO nanosheets act as an active electrode material hold for SCs.


Nickel oxide supercapacitor ionic liquid 



One of the authors SCB is thankful to UGC for RGN fellowship. This work is partially supported by the Brain Pool Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2018H1D3A2002154) and a Human Resources Development Grant (No. 20164030201310) from the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Government Ministry of Trade, Industry and Energy.

Supplementary material

12034_2019_1961_MOESM1_ESM.docx (266 kb)
Supplementary material 1 (docx 265 KB)


  1. 1.
    Wang H, Wang Y and Wang X 2012 Electrochem. Commun. 18 92CrossRefGoogle Scholar
  2. 2.
    Wu C H, Deng S X, Wang H, Sun Y X, Liu J B and Yan H 2014 ACS Appl. Mater. Interfaces 6 1106CrossRefGoogle Scholar
  3. 3.
    Purushothaman K, Babu I, Sethuraman B and Muralidharan G 2013 ACS Appl. Mater. Interfaces 5 10767CrossRefGoogle Scholar
  4. 4.
    Vadiyar M M, Bhise S C, Kolekar S S, Chang J Y, Ghule K S and Ghule A V 2016 J. Mater. Chem. A 4 3504CrossRefGoogle Scholar
  5. 5.
    Han B, Lee E, Kim J and Bang J 2015 New J. Chem. 39 1996CrossRefGoogle Scholar
  6. 6.
    Wu Q, Liu Y and Hu Z 2013 J. Solid State Electrochem. 17 1711CrossRefGoogle Scholar
  7. 7.
    Kim J Y, Kim K H, Kim H K, Park S H, Chung K Y and Kim K B 2014 RSC Adv. 4 16115CrossRefGoogle Scholar
  8. 8.
    Chen P, Chen H, Qiu J and Zhou C 2010 Nano Res. 3 594CrossRefGoogle Scholar
  9. 9.
    Yin B, Zhang S, Jiang H, Qu F and Wu X 2015 J. Mater. Chem. A 3 5722CrossRefGoogle Scholar
  10. 10.
    Vadiyar M, Bhise S, Patil S, Patil S, Pawar D, Ghule A et al 2015 RSC Adv. 5 45935CrossRefGoogle Scholar
  11. 11.
    Sun X, Wang G, Hwang J Y and Lian J 2011 J. Mater. Chem. 21 16581CrossRefGoogle Scholar
  12. 12.
    Dam D and Lee J 2014 ACS Appl. Mater. Interfaces 6 20729CrossRefGoogle Scholar
  13. 13.
    Tang Y, Liu Y, Yu S, Zhao Y, Mu S and Gao F 2014 Electrochim. Acta 123 158CrossRefGoogle Scholar
  14. 14.
    Deng M, Song C, Wang C, Tseng Y, Chen J and Lu K 2015 ACS Appl. Mater. Interfaces 7 9147CrossRefGoogle Scholar
  15. 15.
    Vadiyar M, Kolekar S, Chang J, Kashale A and Ghule A 2016 Electrochim. Acta 222 1604CrossRefGoogle Scholar
  16. 16.
    Xiao A, Zhou S, Zuo C, Zhuan Y and Ding X 2015 Mater. Res. Bull. 70 200CrossRefGoogle Scholar
  17. 17.
    Qiao Y, Wu X S and Li C M 2014 J. Power Sources 266 226CrossRefGoogle Scholar
  18. 18.
    Huang M, Li F, Ji J Y, Zhang Y X, Zhao X L and Gao X 2014 CrystEngComm 16 2878CrossRefGoogle Scholar
  19. 19.
    Singh A, Sarkar D, Khan G G and Mandal K 2014 ACS Appl. Mater. Interfaces 6 4684CrossRefGoogle Scholar
  20. 20.
    Inamdar A I, Kim Y, Pawar S M, Kim J H, Im H and Kim H 2011 J. Power Sources 196 2393CrossRefGoogle Scholar
  21. 21.
    Xu J, Gao L, Cao J, Wang W and Chen Z 2011 J. Solid State Electrochem. 15 2005CrossRefGoogle Scholar
  22. 22.
    Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S et al 2010 Nano Res. 3 643CrossRefGoogle Scholar
  23. 23.
    Xiong S, Yuan C, Zhang X and Qian Y 2011 CrystEngComm 13 626CrossRefGoogle Scholar
  24. 24.
    Tian X, Cheng C, Qian L, Zheng B, Yuan H, Xie S et al 2012 J. Mater. Chem. 22 8029CrossRefGoogle Scholar
  25. 25.
    Li B, Liu W, Zhao X G, Gong W J, Feng J N and Zhang Z D 2014 J. Magn. Magn. Mater. 350 35CrossRefGoogle Scholar
  26. 26.
    Zhai P, Yi Q, Jian J, Wang H, Song P, Dong C et al 2014 Chem. Commun. 50 1854CrossRefGoogle Scholar
  27. 27.
    Dalavi D, Devan R, Patil R, Ma Y, Kang M, Kim J et al 2013 J. Mater. Chem. A 1 1035CrossRefGoogle Scholar
  28. 28.
    Yu T, Cheng X, Zhang X, Sui L, Xu Y, Gao S et al 2015 J. Mater. Chem. A 3 11991CrossRefGoogle Scholar
  29. 29.
    Vadiyar M, Kolekar S, Deshpande N, Chang J, Kashale A and Ghule A 2017 Ionics 23 741 CrossRefGoogle Scholar
  30. 30.
    Ismail R, Ghafori S and Kadhim G 2013 Appl. Nanosci. 3 509CrossRefGoogle Scholar
  31. 31.
    Chen H, Lu Y and Hwang W 2005 Surf. Coat. Technol. 198 138CrossRefGoogle Scholar
  32. 32.
    Moravec P, Smolík J, Keskinen H, Makela J, Bakardjieva S and Levdansky V V 2011 Mater. Sci. Appl. 2 258Google Scholar
  33. 33.
    Dalavi D, Devan R, Patil R, Ma Y and Patil P 2013 Mater. Lett. 90 60CrossRefGoogle Scholar
  34. 34.
    Azaceta E, Chavhan S, Rossi P, Paderi M, Fantini S, Ungureanu M et al 2012 Electrochim. Acta 71 39CrossRefGoogle Scholar
  35. 35.
    Liu H, Liu Y and Li J 2010 Phys. Chem. Chem. Phys. 12 1685CrossRefGoogle Scholar
  36. 36.
    Zhang S, Dokko K and Watanabe M 2015 Chem. Sci. 6 3684CrossRefGoogle Scholar
  37. 37.
    Anouti M, Couadou E, Timperman L and Galiano H 2012 Electrochim. Acta 64 110CrossRefGoogle Scholar
  38. 38.
    Bastakoti B P, Huang H S, Chen L C, Wu K C W and Yamauchi Y 2012 Chem. Commun. 48 9150CrossRefGoogle Scholar
  39. 39.
    Xu L, Ding Y S, Chen C H, Zhao L, Rimkus C, Joesten R et al 2008 Chem. Mater. 20 308CrossRefGoogle Scholar
  40. 40.
    Yuan C, Zhang X, Su L, Gao B and Shen L 2009 J. Mater. Chem. 19 5772CrossRefGoogle Scholar
  41. 41.
    Pu J, Tong Y, Wang S, Sheng E and Wang Z 2014 J. Power Sources 250 250CrossRefGoogle Scholar
  42. 42.
    Alammar T, Shekhah O, Wohlgemuth J and Mudring A V 2012 J. Mater. Chem. 22 18252CrossRefGoogle Scholar
  43. 43.
    Liang K, Tang X and Hu W 2012 J. Mater. Chem. 22 11062CrossRefGoogle Scholar
  44. 44.
    Yu X, Xie C, Yang L and Zhang S 2014 Sens. Actuators B 195 439CrossRefGoogle Scholar
  45. 45.
    Cao F, Zhang F, Deng R, Hu W, Liu D, Song S et al 2011 CrystEngComm 13 4903CrossRefGoogle Scholar
  46. 46.
    Singh A K, Sarkar D, Khan G G and Mandal K 2013 J. Mater. Chem. A 1 12759CrossRefGoogle Scholar
  47. 47.
    Justin P, Meher S K and Rao G R 2010 J. Phys. Chem. C 114 5203CrossRefGoogle Scholar
  48. 48.
    Babu G A, Ravi G, Mahalingam T, Kumaresavanji M and Hayakawa Y 2015 Dalton Trans. 44 4485CrossRefGoogle Scholar
  49. 49.
    Gund G S, Dubal D P, Jambure S B, Shinde S S and Lokhande C D 2013 J. Mater. Chem. A 1 4793CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Analytical Chemistry and Material Science Research LaboratoryShivaji UniversityKolhapurIndia
  2. 2.Department of Materials Science and Engineering and Optoelectronics Convergence Research CenterChonnam National UniversityGwangjuSouth Korea

Personalised recommendations