Advertisement

Bulletin of Materials Science

, 42:256 | Cite as

Ligand exchange in \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) nanoparticles and its effect on counter electrode performance in dye-sensitized solar cells

  • C Imla Mary
  • M Senthilkumar
  • S Moorthy BabuEmail author
Article
  • 30 Downloads

Abstract

Ligand-exchanged \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) (CZTS) nanoparticles (NPs) were successfully synthesized from colloidal NPs by replacing the long chain organic ligand from the surface of NPs via a bi-phasic method. It was found that ammonium sulphide salt \(((\hbox {NH}_{4})_{2}\hbox {S})\) plays a key role in changing the surface of the NPs from hydrophobic to hydrophilic. The efficacy of the ligand exchange process over the surface of the CZTS NPs was analysed using X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy and scanning electron microscopy with energy dispersive X-ray. The ligand-exchanged CZTS NP-based counter electrodes (CEs) were fabricated by drop casting the inorganic ligand (ammonium sulphide)-capped CZTS nanoink onto the conducting substrate. Our result indicates that dye-sensitized solar cells (DSSCs) with inexpensive CZTS NP-based CEs show 2.42% efficiency. The present result indicates that CZTS CEs will be helpful as an alternative CE to a Pt CE in DSSC application.

Keywords

DSSC CZTS CEs Pt CEs bi-phasic ligand exchange colloidal NPs 

Notes

Acknowledgements

The authors sincerely thank DST (DST-TM/SERI/FR/90(G)) and UGC (F.No. 42-855/2013) for funding the research work. The IV characteristics were determined using the facility at CeNSE (INUP user program) in IISc, Bengaluru, funded by the Ministry of Electronics and Information Technology (MeitY), and Govt. of India.

References

  1. 1.
    Mathew S, Yella A, Gao P, Humphry-Basker R, Curchod B F E, Ashari-Astani N et al 2014 Nat. Chem. 6 242CrossRefGoogle Scholar
  2. 2.
    Xin X, He M, Han W, Jung J and Lin Z 2011 Angew. Chem. Int. Ed. 50 11739CrossRefGoogle Scholar
  3. 3.
    Chen S-L, Xu A-C, Tao J, Tao H-J, Shen Y-Z, Zhu L-M et al 2016 Green. Chem. 18 2793CrossRefGoogle Scholar
  4. 4.
    Xiao Y, Wu J, Lin J, Yue G, Lin J, Huang M et al 2013 J. Mater. Chem. A 1 13885CrossRefGoogle Scholar
  5. 5.
    Saranya K, Rameez M and Subramania A 2015 Eur. Polym. J. 66 207CrossRefGoogle Scholar
  6. 6.
    Li G-R, Wang F, Jiang Q-W, Gao X-P and Shen P-W 2010 Angew. Chem. Int. Ed. 49 3653CrossRefGoogle Scholar
  7. 7.
    Kong J, Zhou Z-J, Li M, Zhou W-H, Yuan S-J, Yao R-Y et al 2013 Nanoscale Res. Lett. 8 464CrossRefGoogle Scholar
  8. 8.
    Chen S, Xu A, Tao J, Tao H, Shen Y, Zhu L et al 2015 ACS Sust. Chem. Eng. 3 2652CrossRefGoogle Scholar
  9. 9.
    Zhang X, Xu Y, Zhang J, Dong S, Shen L, Gupta A et al 2018 Sci. Rep. 8 248CrossRefGoogle Scholar
  10. 10.
    Dai P, Zhang G, Chen Y, Jiang H, Feng Z, Lin Z et al 2012 Chem. Commun. 48 3006CrossRefGoogle Scholar
  11. 11.
    Swami S K, Chaturvedi N, Kumar A, Chander N, Dutta V, Kumar D K et al 2013 Phys. Chem. Chem. Phys. 16 23993CrossRefGoogle Scholar
  12. 12.
    Fan M-S, Chen J-H, Li C-T, Cheng K-W and Ho K-C 2015 J. Mater. Chem. A 3 562CrossRefGoogle Scholar
  13. 13.
    Chen S-L, Tao J, Tao H-J, Shen Y-Z, Xu A-C, Cao F-X et al 2016 Dalton Trans. 45 4513CrossRefGoogle Scholar
  14. 14.
    Xie Y, Zhang C, Yue F, Zhang Y, Shi Y and Ma T 2013 RSC Adv. 3 23264CrossRefGoogle Scholar
  15. 15.
    Kim Y, Woo K, Kim I, Cho Y S, Jeong S and Moon J 2013 Nanoscale 5 10183CrossRefGoogle Scholar
  16. 16.
    Wang X, Kou D-X, Zhou W-H, Zhou Z-J, Wu S-X and Cao X 2014 Nanoscale Res. Lett. 9 262CrossRefGoogle Scholar
  17. 17.
    Yang Y, Que W, Zhang X, Yin X, Xing Y, Que M et al 2017 Appl. Catal. B: Environ. 200 402CrossRefGoogle Scholar
  18. 18.
    Mary C I, Ananthakumar S, Senthilkumar M and Babu S M 2017 Mat. Today Process. 4 12484CrossRefGoogle Scholar
  19. 19.
    Zha C, Shen L, Zhang X, Wang Y, Korgel B A, Gupta A et al 2014 ACS Appl. Mater. Interfaces 6 122CrossRefGoogle Scholar
  20. 20.
    Tang Z, Wu J, Zheng M, Huo J and Lan Z 2013 Nano. Eng. 2 622Google Scholar
  21. 21.
    Casavola M, Xie J, Meeldijk J D, Krans N A, Goryachev A, Hofmann J P et al 2017 ACS Catal. 7 5121CrossRefGoogle Scholar
  22. 22.
    Suehiro S, Horita K, Kumamoto K, Yuasa M, Tanaka T, Fujita K et al 2014 J. Phys. Chem. C 118 804CrossRefGoogle Scholar
  23. 23.
    Carrete A, Shavel A, Fontane X, Montserrat J, Fan J, Ibanez M et al 2013 J. Am. Chem. Soc. 135 15982CrossRefGoogle Scholar
  24. 24.
    Li Z, Lui A L K, Lam K H, Xi L and Lam Y M 2014 Inorg. Chem. 53 10874CrossRefGoogle Scholar
  25. 25.
    Huang T J, Yin X, Tang C, Qi G and Gong H 2015 J. Mater. Chem. A 3 17788CrossRefGoogle Scholar
  26. 26.
    Xu J, Yang X, Yang Q-D, Wong T-L and Lee C-S 2012 J. Phys. Chem. C 116 19718CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia

Personalised recommendations