Advertisement

Bulletin of Materials Science

, 42:271 | Cite as

A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature

  • A Sunilkumar
  • S Manjunatha
  • T MachappaEmail author
  • B Chethan
  • Y T Ravikiran
Article
  • 11 Downloads

Abstract

An electrically conductive polypyrrole–tungsten disulphide (\({\hbox {PPy/WS}}_{2}\)) composite was synthesized by a chemical polymerization technique. The composite was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). FESEM images showed the grainy morphology with permeable nature. XRD and FTIR characteristic peak analysis exhibited semi-crystalline behaviour and confirming the interfacial interaction of the as-synthesized composite. EDX confirmed the presence of carbon, nitrogen, oxygen, tungsten and sulphur in the composite. The humidity sensing property of the \({\hbox {PPy/WS}}_{2}\)-50% composite was tested and an approximate linear decrease in resistance was observed with an increase in relative humidity, along with a maximum sensing response of 97% and a response-recovery time of 52 and 58 s, respectively. The sensing ability of the composite was observed to be stable, when monitored for a period of two months.

Keywords

Polypyrrole tungsten disulphide humidity sensor relative humidity 

Notes

Acknowledgements

All the authors thank Dr Yashvanth Bhupal, Director, Ballari Institute of Technology and Management, Ballari, for his support. S Manjunatha thanks Sri D K Mohan, Chairman and Dr L Suresh, Principal of Cambridge Institute of Technology, Bengaluru for their encouragement.

References

  1. 1.
    Hatchett D W and Josowicz M 2008 Chem. Rev. 108 746CrossRefGoogle Scholar
  2. 2.
    Farahani H, Wagiran R and Hamidon M N 2014 Sensors 14 7881CrossRefGoogle Scholar
  3. 3.
    Manjunatha S, Sunilkumar A and Machappa T 2018 AIP Conf. Proc. 1953 030019-1Google Scholar
  4. 4.
    Vishnoi P, Rajesh S, Manjunatha S, Bandyopadhyay A, Barua M and Pati S K 2017 ChemPhysChem 18 2985CrossRefGoogle Scholar
  5. 5.
    Rao C N R, Gopalakrishnan K and Maitra U 2015 ACS Appl. Mater. Interfaces 7 7809CrossRefGoogle Scholar
  6. 6.
    Manjunatha S, Rajesh S, Vishnoi P and Rao C N R 2017 J. Mater. Res. 32 2984CrossRefGoogle Scholar
  7. 7.
    Manjunatha S, Chethan B, Ravikiran Y T and Machappa T 2018 AIP Conf. Proc. 1953 030096-1Google Scholar
  8. 8.
    Manjunatha S, Machappa T, Ravikiran Y T, Chethan B and Sunilkumar A 2019 Physica B Phys. Condens. Matter. 561 170CrossRefGoogle Scholar
  9. 9.
    Chaluvaraju B V, Ganiger S K and Murugendrappa M V 2016 J. Mater. Sci.: Mater. Electron. 27 1044Google Scholar
  10. 10.
    Suri K, Annapoorni S, Sarkar A K and Tandon R P 2002 Sens. Actuators B Chem. 81 277CrossRefGoogle Scholar
  11. 11.
    Raj A M E S, Magdalane C M and Nagaraja K S 2002 Phys. Stat. Sol. (A) 234 230Google Scholar
  12. 12.
    Su P and Huang L 2007 Sens. Actuators B Chem. 123 501CrossRefGoogle Scholar
  13. 13.
    Sajjan K C, Faisal M, Kumari S C V, Ravikiran Y T and Khasim S 2013 AIP Conf. Proc. 289 289CrossRefGoogle Scholar
  14. 14.
    Wang L, He Y, Hu J, Qi Q and Zhang T 2011 Sens. Actuators B Chem. 153 460CrossRefGoogle Scholar
  15. 15.
    Machappa T and Prasad M V N A 2012 Bull. Mater. Sci. 35 75CrossRefGoogle Scholar
  16. 16.
    Machappa T, Sasikala M, Anilkumar K R and Prasad M V N A 2009 Sens. Transducers 107 77Google Scholar
  17. 17.
    Chethan B, Raj Prakash H G, Ravikiran Y T, Vijaya Kumari S C, Ramana C H V V and Thomas S 2019 Talanta 196 337CrossRefGoogle Scholar
  18. 18.
    Sun A, Li Z, Wei T, Li Y and Cui P 2009 Sens. Actuators B Chem. 142 197CrossRefGoogle Scholar
  19. 19.
    Patil S N, Pawar A M, Tilekar S K and Ladgaonkar B P 2016 Sens. Actuators A Phys. 244 35CrossRefGoogle Scholar
  20. 20.
    Suhada N, Tahiruddin M, Daik R and Selangor B 2015 Sch. Res. Libr. 7 159Google Scholar
  21. 21.
    Vishnuvardhan T K, Kulkarni V R, Basavaraja C and Raghavendra S C 2006 Bull. Mater. Sci. 29 77CrossRefGoogle Scholar
  22. 22.
    Park K and Noida G 2016 Int. J. Sci. Eng. Stud. 3 7Google Scholar
  23. 23.
    Mane A T, Navale S T, Pawar R C, Lee C S and Patil V B 2015 Synth. Met. 199 187CrossRefGoogle Scholar
  24. 24.
    Kotresh S, Ravikiran Y T, Vijay Kumari S C, Chandrasekhar T, Ramana C H V V and Thomas S 2016 Mater. Manuf. Process 31 1976CrossRefGoogle Scholar
  25. 25.
    Lin W, Chang H and Wu R 2013 Sens. Actuators B Chem. 181 326Google Scholar
  26. 26.
    Manjunatha S, Machappa T, Sunilkumar A and Ravikiran Y T 2018 J. Mater. Sci. Mater. Electron. 29 11581Google Scholar
  27. 27.
    Chougule M A, Dalavi D S, Patil P S, Moholkar A V, Agawane G L and Kim J H 2012 Measurement 45 1989Google Scholar
  28. 28.
    Walter C, Kummer K, Vyalikh D and Quade A 2012 J. Electrochem. Soc. 159 560CrossRefGoogle Scholar
  29. 29.
    Tandon R P, Tripathy M R, Arora A K and Hotchandani S 2006 Sens. Actuators B 114 768CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • A Sunilkumar
    • 1
  • S Manjunatha
    • 1
    • 2
  • T Machappa
    • 1
    Email author
  • B Chethan
    • 3
  • Y T Ravikiran
    • 4
  1. 1.Department of Physics, VTURCBallari Institute of Technology and ManagementBallariIndia
  2. 2.Department of PhysicsCambridge Institute of TechnologyBengaluruIndia
  3. 3.Department of PhysicsJNN College of EngineeringShivamoggaIndia
  4. 4.Department of PG Studies in PhysicsGovernment Science CollegeChitradurgaIndia

Personalised recommendations