Advertisement

Bulletin of Materials Science

, 42:265 | Cite as

Morphology-dependent electrochemical performances of nickel hydroxide nanostructures

  • Karthik S BhatEmail author
  • H S Nagaraja
Article
  • 35 Downloads

Abstract

Electrochemical capacitors form part of the developing technologies in the field of alternative energy sources. In the present work, nickel hydroxide (\(\hbox {Ni(OH)}_{2}\)) nanosheets and microflowers are hydrothermally prepared employing different chemical precursors. Structure, morphology and chemical analysis are conducted using powder X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements. Electrochemical performances as supercapacitor electrodes of the synthesized nanostructures are evaluated through cyclic voltammetry and galvanostatic charge–discharge measurements with three-electrode configurations. The results indicated the specific capacitance of 180 and \(417\ \hbox {F g}^{-1}\) at a scan rate of \(5\ \hbox {mV}\ \hbox {s}^{-1}\) for \(\hbox {Ni(OH)}_{2}\) nanosheets and microflowers, respectively. The higher specific capacitances for \(\hbox {Ni(OH)}_{2}\) microflowers could be attributed to the higher specific surface area, morphology, electronic conductivity and porosity. Both \(\hbox {Ni(OH)}_{2}\) nanostructures exhibited good capacitance retention for 1500 cycles.

Keywords

Hydroxides nickel hydroxide supercapacitors nanosheets microflowers 

References

  1. 1.
    Serrano E, Rus G and García-Martínez J 2009 Renewable Sustainable Energy Rev. 13 2373CrossRefGoogle Scholar
  2. 2.
    Wang H, Feng H and Li J 2014 Small 10 2165CrossRefGoogle Scholar
  3. 3.
    Hu Y and Fisher T S 2018 Bull. Mater. Sci. 41 124CrossRefGoogle Scholar
  4. 4.
    Zhi M, Xiang C, Li J, Li M and Wu N 2013 Nanoscale 5 72CrossRefGoogle Scholar
  5. 5.
    Bhat K S and Nagaraja H S 2019 Electrochim. Acta 302 459CrossRefGoogle Scholar
  6. 6.
    Li W and Yang Y J 2014 J. Solid State Electrochem. 18 1621CrossRefGoogle Scholar
  7. 7.
    Gao Y, Wu J, Zhang W, Tan Y, Gao J, Tang B et al 2015 J. Appl. Electrochem. 45 541CrossRefGoogle Scholar
  8. 8.
    Periasamy P, Krishnakumar T, Sathish M, Chavali M, Siril P F and Devarajan V P 2018 J. Mater. Sci.: Mater. Electron. 29 6157Google Scholar
  9. 9.
    Sichumsaeng T, Chanlek N and Maensiri S 2018 Appl. Surf. Sci. 446 177CrossRefGoogle Scholar
  10. 10.
    Bhat K S, Shenoy S, Nagaraja H S and Sridharan K 2017 Electrochim. Acta 248 188CrossRefGoogle Scholar
  11. 11.
    Chen C, Fan W, Ma T and Fu X 2014 Ionics 20 1489CrossRefGoogle Scholar
  12. 12.
    Tamai H, Hakoda M, Shiono T and Yasuda H 2007 J. Mater. Sci. 42 1293CrossRefGoogle Scholar
  13. 13.
    Kiran S K, Padmini M, Das H T and Elumalai P 2017 J. Solid State Electrochem. 21 927CrossRefGoogle Scholar
  14. 14.
    Aghazadeh M, Karimzadeh I, Ahmadi A and Ganjali M R 2018 J. Mater. Sci.: Mater. Electron. 29 14567Google Scholar
  15. 15.
    Ghasemi S, Jafari M and Ahmadi F 2016 Electrochim. Acta 210 225CrossRefGoogle Scholar
  16. 16.
    Rajagopal R and Ryu K-S 2018 J. Ind. Eng. Chem. 60 441CrossRefGoogle Scholar
  17. 17.
    Bhat K S and Nagaraja H S 2018 AIP Conf. Proc. 1943 020057CrossRefGoogle Scholar
  18. 18.
    Anandan S, Gnana Sundara Raj B, Lee G-J and Wu J J 2013 Mater. Res. Bull. 48 3357CrossRefGoogle Scholar
  19. 19.
    Kovalenko V L, Kotok V A, Sykchin A A, Mudryi I A, Ananchenko B A, Burkov A A et al 2017 J. Solid State Electrochem. 21 683CrossRefGoogle Scholar
  20. 20.
    Chen Y, Zhang Z, Sui Z, Liu Z, Zhou J and Zhou X 2016 Int. J. Hydrogen Energy 41 12136CrossRefGoogle Scholar
  21. 21.
    Qu R, Tang S, Qin X, Yuan J, Deng Y, Wu L et al 2017 J. Alloys Compd. 728 222CrossRefGoogle Scholar
  22. 22.
    Wang H, Shi X, Zhang W and Yao S 2017 J. Alloys Compd. 711 643CrossRefGoogle Scholar
  23. 23.
    Zeng Z, Sun P, Zhu J and Zhu X 2017 Surf. Interfaces 8 73CrossRefGoogle Scholar
  24. 24.
    Ghosh D, Giri S, Mandal A and Das C K 2013 Chem. Phys. Lett. 573 41CrossRefGoogle Scholar
  25. 25.
    Bhat K S, Barshilia H C and Nagaraja H S 2017 Int. J. Hydrogen Energy 42 24645CrossRefGoogle Scholar
  26. 26.
    Karthik S B and Nagaraja H S 2018 Mater. Res. Express 5 105504CrossRefGoogle Scholar
  27. 27.
    Guan B, Li Y, Yin B, Liu K, Wang D, Zhang H et al 2017 Chem. Eng. J. 308 1165CrossRefGoogle Scholar
  28. 28.
    Bhat K S and Nagaraja H S 2018 Int. J. Hydrogen Energy 43 19851CrossRefGoogle Scholar
  29. 29.
    Kim S-I, Kang K-N, Kim S-W and Jang J-H 2014 RSC Adv. 4 59310CrossRefGoogle Scholar
  30. 30.
    Bu I Y Y and Huang R 2015 Mater. Sci. Semicond. Process. 31 131CrossRefGoogle Scholar
  31. 31.
    Portet C, Taberna P L, Simon P, Flahaut E and Laberty-Robert C 2005 Electrochim. Acta 50 4174CrossRefGoogle Scholar
  32. 32.
    Aurbach D 1998 J. Electrochem. Soc. 145 3024CrossRefGoogle Scholar
  33. 33.
    Musiani M M 1990 Electrochim. Acta 35 1665CrossRefGoogle Scholar
  34. 34.
    Zhu J, Xiang L, Xi D, Zhou Y and Yang J 2018 Bull. Mater. Sci. 41 54CrossRefGoogle Scholar
  35. 35.
    Biswal M, Banerjee A, Deo M and Ogale S 2013 Energy Environ. Sci. 6 1249CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology KarnatakaMangaluruIndia

Personalised recommendations