Bulletin of Materials Science

, 42:266 | Cite as

Elucidation of structural, morphological, optical and photoluminescence properties of single and (In, Ga) co-doped ZnO nanocrystalline thin films

  • M ShaheeraEmail author
  • K G Girija
  • Manmeet Kaur
  • V Geetha
  • A K Debnath
  • R K Vatsa
  • K P Muthe
  • S C Gadkari


Single and co-doped ZnO thin films are currently under intense investigation and development for optoelectronic applications. Here in this study, pristine, indium-doped (IZO), gallium-doped (GZO) and co-doped (IGZO) ZnO thin films were deposited on a glass substrate using radio frequency magnetron sputtering. A comparative study of all the films was carried out on the basis of their various properties. The effect of single and co-doping on the structural (X-ray diffraction (XRD) studies and Raman studies), morphological (field emission scanning electron microscopy and energy dispersive X-ray spectroscopy studies) and optical properties (ultraviolet–visible (UV–Vis) and photoluminescence (PL)) of the deposited films was investigated. X-ray photoelectron spectroscopy (XPS) characterization was employed to analyse the surface chemical composition and bonding of the deposited film. From the XRD patterns, it was found that the films were highly crystalline in nature and preferentially oriented along the (002) direction with a hexagonal wurtzite structure, consistent with Raman analysis. IGZO films displayed a dramatic improvement in the surface morphology as compared with the single dopant films due to the compensation effect of gallium and indium doping which reduced the lattice strain. The XPS analysis confirmed the presence of the oxidized dopants in each film. All thin films have shown excellent optical properties with more than 90% transmission in the visible range of light. The blue-shift of the absorption edge accompanied by the increase of the optical band gap confirmed the Burstein–Moss effect. The UV PL peak originated from the near band edge emission of crystalline ZnO, while the visible PL was associated with the radiative transition related to oxygen interstitial (Oi) defects in the ZnO structure.


ZnO co-doping RF sputtering XPS photoluminescence 



The first and fourth authors would like to thank the thin film devices group, Technical Physics Division at BARC, Mumbai, for their help during the work.


  1. 1.
    Jayaraman V K, Alvarez A M, de la luz M and Amador O 2017 Physica E 86 164CrossRefGoogle Scholar
  2. 2.
    Wang F-H and Chang C-L 2016 Appl. Surf. Sci. 370 83CrossRefGoogle Scholar
  3. 3.
    Snigurenko D, Guziewicz E, Krajewski T A, Jakiela R, Syryanyy Y, Kopalko K et al 2016 Mater. Res. Express 3 125907 CrossRefGoogle Scholar
  4. 4.
    Li X, Yang Y, Wu X, Zhang F C and Yang H 2018 Ferroelectr. 530 11CrossRefGoogle Scholar
  5. 5.
    Shahid M U, Deen K M, Ahmad A, Akram M A, Aslam M and Akhtar W 2016 Appl. Nano Sci. 6 235CrossRefGoogle Scholar
  6. 6.
    Castro M V and Tavares C J 2015 Thin Solid Films 586 13CrossRefGoogle Scholar
  7. 7.
    You H-C 2013 Int. J. Electrochem. Sci. 8 9773Google Scholar
  8. 8.
    Al-Asedu H J, Bidis N, Al Khafaji S A and Bakhtiar H 2018 Mater. Sci. Semicond. Proc. 77 50CrossRefGoogle Scholar
  9. 9.
    Benhaliliba M, Benouis C E, Aida M S, Yakuphanoglu F and Sanchez Juarez A 2010 J. Sol–Gel Sci. Technol. 55 335CrossRefGoogle Scholar
  10. 10.
    Chang S-C 2014 Nanoscale Res. Lett. 9 562CrossRefGoogle Scholar
  11. 11.
    Chang S-C 2014 Int. J. Photoenergy 2014 916189Google Scholar
  12. 12.
    Gaspara D, Pereiraa L, Gehrke K, Galler B, Fortunato E and Martins R 2017 Sol. Energy Mater. Sol. Cells 163 255CrossRefGoogle Scholar
  13. 13.
    Singh K, Dhar R and Mohan D 2016 J. Integr. Sci. Technol. 4 33Google Scholar
  14. 14.
    Jayathilake D S Y, Nirmal Peiris T A, Sagu J S, Potter D B, Wijayantha K G U, Carmalt C J et al 2017 ACS Sustain. Chem. Eng. 5 4820CrossRefGoogle Scholar
  15. 15.
    Wahab H A, Salama A A, El-Saeid A A, Nur O, Willande M and Battisha I K 2013 Results Phys. 3 46CrossRefGoogle Scholar
  16. 16.
    Jayaraman V K, Álvarez A M, Kuwabara Y M, Koudriavstev Y, de la luz M and Amador O 2016 Mater. Sci. Semicond. Proc. 47 32 Google Scholar
  17. 17.
    Bidier S A, Hashim M R, Al-Diabat A M and Bououdina M 2017 Physica E 88 169CrossRefGoogle Scholar
  18. 18.
    Le H Q and Chua S J 2011 J. Phys. D: Appl. Phys. 44 125104CrossRefGoogle Scholar
  19. 19.
    Gadallah A S and El Nahass M M 2013 Adv. Cond. Mat. Phys. 2013 Article ID 234546 Google Scholar
  20. 20.
    Rouchdi M, Salmani E, Fares B, Hassanain N and Mzerd A 2017 Results Phys. 7 620CrossRefGoogle Scholar
  21. 21.
    Chirakkara S and Krupanidhi S B 2011 Phys. Status Solidi RRL 6 34CrossRefGoogle Scholar
  22. 22.
    Wang F-H, Chao J-C, Liu H-W and Kang T-K 2015 J. Nanomater 2015 936482Google Scholar
  23. 23.
    Duan J, Xiong Q, Hu J and Wang H 2015 J. Power Energy Eng. 3 11CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Mendelsberg R J, Zhu J, Han J and Anders A 2013 Appl. Surf. Sci. 265 738CrossRefGoogle Scholar
  25. 25.
    Tohsophon T, Wattanasupinyo N, Silskulsuk B and Sirikulrat N 2013 Thin Solid Films 520 726CrossRefGoogle Scholar
  26. 26.
    Abbasi M A, Ibupoto Z H, Hussain M, Nur O and Willander M 2013 Nanoscale Res. Lett. 8 320CrossRefGoogle Scholar
  27. 27.
    Allabergenov B, Chung S-H, Jeong S M, Kim S and Choi B 2013 Opt. Mater. Express 3 1733CrossRefGoogle Scholar
  28. 28.
    Alvi N H, Ul Hasan K, Nur O and Willander M 2011 Nanoscale Res. Lett. 6 130 Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Research Department of PhysicsGovernment Victoria CollegePalakkadIndia
  2. 2.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations