Advertisement

Bulletin of Materials Science

, 42:264 | Cite as

Impurity concentration dependent electrical conduction in germanium crystals at low temperatures

  • Manoranjan GhoshEmail author
  • Shreyas Pitale
  • S G Singh
  • Shashwati Sen
  • S C Gadkari
Article
  • 7 Downloads

Abstract

A germanium single crystal of 7 N+ purity with a diameter of 45 mm and a length of 100 mm has been grown by the Czochralski method. The structural quality of the crystal has been characterized by Laue diffraction. Electrical conduction and Hall measurements are carried out on samples retrieved from different parts of the crystal along the growth axis. The top part of the crystal exhibits the lowest impurity concentration (\({\sim } 10^{12}\,\hbox {cm}^{-3})\) that gradually increases towards the bottom (\(10^{13}\,\hbox {cm}^{-3})\). The crystal is n-type at room temperature and the resistivity shows a non-monotonic temperature dependence. There is a transition from n-type to p-type conductivity below room temperature at which bulk resistivity shows a maximum and dip in carrier mobility. The intrinsic to extrinsic transition region shifts towards room temperature as the impurity concentration increases and it reflects the purity level of the crystal. A similar trend is observed in the boron-implanted high purity germanium (HPGe) crystal at different doping levels. The phenomena can be understood as a result of interplay between a temperature dependent conduction mechanism driven by an impurity band and an intrinsic carrier in Ge crystals having fairly low acceptor concentrations (\({<}10^{12}\,\hbox {cm}^{-3})\).

Keywords

Ge crystal growth minority carrier lifetime resistivity carrier concentration hall mobility boron implantation 

Notes

Acknowledgements

The authors are thankful to all members of the Crystal Technology Section for their unconditional help and support.

References

  1. 1.
    Dalven R 1966 Infrared Phys. 6 129CrossRefGoogle Scholar
  2. 2.
    Debye P P and Conwell E M 1953 Phys. Rev. 93 693CrossRefGoogle Scholar
  3. 3.
    Wada K and Kimerling L C (eds) 2015 Photonics and electronics with germanium (New York: Wiley) ISBN: 978-3527-32821-5Google Scholar
  4. 4.
    Hansen W L and Haller E E 1981 IEEE Trans. Nucl. Sci. NS-28 541CrossRefGoogle Scholar
  5. 5.
    Haller E E, Pearl P L, Hubbard G S and Hansen W L 1979 IEEE Trans. Nucl. Sci. NS-26 265CrossRefGoogle Scholar
  6. 6.
    Haller E E, Hansen W L and Goulding F S 1972 Nuclear Science Symposium; Miami Beach, Florida, USA, CONF-721202-12 481Google Scholar
  7. 7.
    Eberth J and Simpson J 2008 Prog. Part. Nucl. Phys. 60 283CrossRefGoogle Scholar
  8. 8.
    Yang G, Wang G, Xiang W, Guan Y, Sun Y, Mei D et al 2012 J. Cryst. Growth 352 43CrossRefGoogle Scholar
  9. 9.
    Haller E E, Hansen W L and Goulding F S 1981 Adv. Phys. 30 93CrossRefGoogle Scholar
  10. 10.
    Hubbard G S, Haller E E and Hansen W L 1978 IEEE Trans. Nucl. Sci. NS-25 362CrossRefGoogle Scholar
  11. 11.
    Zhang X, Friedrich S and Friedrich B 2018 J. Cryst. Process Technol. 8 33CrossRefGoogle Scholar
  12. 12.
    Yang G, Govani J, Mei H, Guan Y, Wang G, Huang M et al 2014 Cryst. Res. Technol. 49 269CrossRefGoogle Scholar
  13. 13.
    Robertson R and Kennett T J 1972 Nucl. Instrum. Methods 98 599CrossRefGoogle Scholar
  14. 14.
    Chroneos A and Bracht H 2014 Appl. Phys. Rev. 1 011301CrossRefGoogle Scholar
  15. 15.
    Katz M J 1965 Phys. Rev. A 140 1323CrossRefGoogle Scholar
  16. 16.
    Fritzsche H 1955 Phys. Rev. 99 406CrossRefGoogle Scholar
  17. 17.
    Hung C S and Gliessman J R 1954 Phys. Rev. 96 1226CrossRefGoogle Scholar
  18. 18.
    Boldrini V, Maggioni G, Carturan S, Raniero W, Sgarbossa F, Milazzo R et al 2019 J. Phys. D: Appl. Phys. 52 035104CrossRefGoogle Scholar
  19. 19.
    Spitzer W G, Firle T E, Cutler M, Shulman R G and Becker M 1955 J. Appl. Phys. 26 414CrossRefGoogle Scholar
  20. 20.
    Nishina Y and Danielson G C 1957 Ames Laboratory Technical Reports-170, IOWA State College, ISC-926Google Scholar
  21. 21.
    Yang G, Kooi K, Wang G, Mei H, Li Y and Mei D 2018 Appl. Phys. A 124 381CrossRefGoogle Scholar
  22. 22.
    Yang G, Mei D, Govani J, Wang G and Khizar M 2013 Appl. Phys. A 113 207CrossRefGoogle Scholar
  23. 23.
    Nuclear Instruments and Detectors Committee of the IEEE Nuclear and Plasma Sciences Society 1993 IEEE Std. 1160-1993, INSPEC Accession Number: 4471071Google Scholar
  24. 24.
    Sapoval B and Hermann C 1995 Physics of semiconductors (Springer-Verlag) ISBN 978-0-387-94024-3Google Scholar
  25. 25.
    Hung C S 1950 Phys. Rev. 79 727CrossRefGoogle Scholar
  26. 26.
    Paige E G S 1960 J. Phys. Chem. Solids 16 207CrossRefGoogle Scholar
  27. 27.
    Jasper C, Rubin L, Lindfors C, Jones K S and Oh J 2002 Proceedings of the International Conference on Ion Implantation Technology vol 22–27 (IEEE Inc.: USA) p 548Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Manoranjan Ghosh
    • 1
    Email author
  • Shreyas Pitale
    • 1
  • S G Singh
    • 1
  • Shashwati Sen
    • 1
  • S C Gadkari
    • 1
  1. 1.Crystal Technology Section, Technical Physics DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations