Advertisement

Bulletin of Materials Science

, 42:261 | Cite as

Band structure and thermoelectric properties of \(\hbox {Cu}_{2}\hbox {O}\) from GGA and GGA+U approaches

  • V MauryaEmail author
  • K B Joshi
Article
  • 12 Downloads

Abstract

Electronic band structures and thermoelectric (TE) properties of cuprous oxide crystallizing in the Pn3m space group are investigated using the linearized augmented plane wave method. The generalized gradient approximation (GGA) and GGA+U approaches are adopted for calculations at the level of the density functional theory. After achieving the ground state of the crystal, the electronic band structures are calculated. The ab initio calculations are interfaced with the Boltzmann transport equations to unveil TE properties. We have found the Seebeck coefficient, power factor and electrical conductivity to compute the electronic fitness function (EFF) further. The effect of temperature is also studied. The EFF suggests that the material may become a useful TE material after p-type doping.

Keywords

Cuprous oxide electronic band structure thermoelectric properties 

Notes

Acknowledgements

VM is thankful to the UGC, New Delhi for granting the SRF under its BSR scheme. This work is also partially supported by the UGC-SAP and RUSA grants.

References

  1. 1.
    Meyer B K et al 2012 Phys. Status Solidi B 249 1487CrossRefGoogle Scholar
  2. 2.
    Heinemann M, Eifert B and Heiliger C 2013 Phys. Rev. B 87 115111CrossRefGoogle Scholar
  3. 3.
    Hartung D, Gather F, Hering P, Kandzia C, Reppin D, Polity A et al 2015 Appl. Phys. Lett. 106 253901CrossRefGoogle Scholar
  4. 4.
    Wong T S K, Zhuk S, Masudy-Panah S and Dalapati G K 2016 Materials 9 271CrossRefGoogle Scholar
  5. 5.
    Rai B P 1988 Sol. Cells 25 265CrossRefGoogle Scholar
  6. 6.
    Chen L C 2013 Mater. Sci. Semicond. Process. 16 1172CrossRefGoogle Scholar
  7. 7.
    Nandy S, Banerjee A N, Fortunato E and Martins R 2013 Rev. Adv. Sci. Eng. 2 273CrossRefGoogle Scholar
  8. 8.
    Zemzemi M, Elghoul N, Khirouni K and Alaya S 2014 JETP 118 235CrossRefGoogle Scholar
  9. 9.
    Young A P and Schwartz C M 1969 J. Phys. Chem. Solids 30 249CrossRefGoogle Scholar
  10. 10.
    Chen X, Parker D, Du M H and Singh D J 2013 New J. Phys. 15 043029CrossRefGoogle Scholar
  11. 11.
    Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B 76 045209CrossRefGoogle Scholar
  12. 12.
    Linnera J and Karttunen A J 2017 Phys. Rev. B 96 014304CrossRefGoogle Scholar
  13. 13.
    Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467CrossRefGoogle Scholar
  14. 14.
    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67CrossRefGoogle Scholar
  17. 17.
    Seeger K 2004 Semiconductor physics 9th edn (Berlin: Springer)CrossRefGoogle Scholar
  18. 18.
    Xing G, Sun J, Li Y, Fan X, Zheng W and Singh D J 2017 Phys. Rev. Mater. 1 065405CrossRefGoogle Scholar
  19. 19.
    Maurya V and Joshi K B 2019 J. Alloys Compd. 779 971CrossRefGoogle Scholar
  20. 20.
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  21. 21.
    Isseroff L Y and Carter E A 2012 Phys. Rev. B 85 235142CrossRefGoogle Scholar
  22. 22.
    Xing G, Sun J, Ong K P, Fan X, Zheng W and Singh D J 2016 APL Mater. 4 053201CrossRefGoogle Scholar
  23. 23.
    Sun J and Singh D J 2017 J. Mater. Chem. A 5 8499CrossRefGoogle Scholar
  24. 24.
    Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125CrossRefGoogle Scholar
  25. 25.
    Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A et al 1988 Phys. Rev. B 38 11322CrossRefGoogle Scholar
  26. 26.
    Shen Z X, List R S, Dessau D S, Parmigiani F, Arko A J, Bartlett R et al 1990 Phys. Rev. B 42 8081CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsM. L. Sukhadia UniversityUdaipurIndia

Personalised recommendations