Advertisement

Photo-catalytic dye degradation of methyl orange using zirconia–zeolite nanoparticles

  • M MansouriEmail author
  • N Mozafari
  • B Bayati
  • N Setareshenas
Article

Abstract

In this research, the dye photo-catalytic removal was investigated using zirconia \((\hbox {ZrO}_{2})\) nanocatalysts, zeolite (Ze), \(\hbox {ZrO}_{{2}}\)–Ze with different percentages and optimized \(\hbox {ZrO}_{{2}}\)–Ze doped via urea, copper oxide and cerium oxide. In order to determine the optimal conditions, the effects of different catalysts and parameters such as dye concentration, UV lamp power, amount of the loaded catalyst and pH were investigated. The response surface methodology was used to obtain optimal experimental conditions. Physical and chemical properties of materials were investigated by X-ray diffraction, Fourier transform infrared, scanning electron microscopy and Brunauer–Emmett–Teller. Completely methyl orange (MO)-dye removal (100%) was achieved at optimal conditions under UV light during 80 min. The optimal operational condition for MO photo-catalytic decomposition using an optimal N-doped 10 wt% \(\hbox {ZrO}_{{2}}\)–zeolite nanocatalyst was obtained at UV lamp power, pH, catalyst loading and dye concentration of 15 W, 3, 0.4 g \(\hbox {l}^{-1}\) and 5 mg \(\hbox {l}^{-1}\), respectively. Photo-catalytic degradation kinetics of MO described well using pseudo-first order which is in accordance with the Langmuir–Hinshelwood model (\(k_{\mathrm{app}} = 0.031~\hbox {min}^{-1})\).

Keywords

Advanced oxidation N-doped zirconia–zeolite experimental design optimization nanocatalyst 

Notes

Acknowledgements

MM thanks the University of Ilam, for the award research fellowship.

References

  1. 1.
    Mansouri M, Tanzifi M, Lotfi H and Nademi M 2017 St. Cerc. St. CICBIA 18 153Google Scholar
  2. 2.
    Alalm M G, Ookawara S, Fukushi D, Sato A and Tawfi A 2016 J. Hazard. Mater. 302 225CrossRefGoogle Scholar
  3. 3.
    Ahmad T, Shahazad M and Phul R 2017 Mater. Sci. Eng. Int. J. 1 100Google Scholar
  4. 4.
    Mahadwad O K, Parikh P A, Jasra R V and Patil C 2011 Bull. Mater. Sci. 34 551CrossRefGoogle Scholar
  5. 5.
    Khatamian M, Hashemian S and Sabaee S 2010 Mater. Sci. Semicond. Process. 13 156CrossRefGoogle Scholar
  6. 6.
    Ökte A N and Yilmaz Ö 2008 Appl. Catal. B 85 92CrossRefGoogle Scholar
  7. 7.
    Bhattacharjee S, Sarkar S H, Raybarman U and Panja J 2016 Int. J. Innov. Res. Sci. Technol. 2 284Google Scholar
  8. 8.
    Panpa W, Sujaridworakun P and Jinawath S 2008 Appl. Catal. B 80 271CrossRefGoogle Scholar
  9. 9.
    Zhao J, Wang X, Zhang L, Hou X, Li Y and Tang C 2011 J. Hazard. Mater. 188 231CrossRefGoogle Scholar
  10. 10.
    Ismail S, Ahmad Z A, Berenov A and Lockman Z 2011 Corros. Sci. 53 1156CrossRefGoogle Scholar
  11. 11.
    Basahel S N, Ali T T, Mokhtar M and Narasimharao K 2015 Nanoscale Res. Lett. 10 73CrossRefGoogle Scholar
  12. 12.
    Yoa S, Jia X, Jiao L, Zhu C and Shi Z 2012 Indian J. Chem. 51A 1049Google Scholar
  13. 13.
    Mzoughi M, Anku W W, Oppong S O B, Shukla S K, Agorku E S and Govender P P 2016 Res. Artic. Adv. Mater. Lett. 7 946CrossRefGoogle Scholar
  14. 14.
    Amaladhas P T and Thavamani S S 2013 Adv. Mater. Lett. 4 688CrossRefGoogle Scholar
  15. 15.
    Ivanova T, Harizanova A, Koutzarova T and Vertruyen B 2010 Cryst. Res. Technol. 45 1154CrossRefGoogle Scholar
  16. 16.
    Hao Y, Li J, Yang X, Wang X and Lu L 2004 Mater. Sci. Eng. A 367 243CrossRefGoogle Scholar
  17. 17.
    Manivannan M and Rajendran S 2011 Int. J. Eng. Sci. Technol. 3 8048Google Scholar
  18. 18.
    Devi L G and Rajashekhar K E 2011 J. Mol. Catal. A: Chem. 334 65CrossRefGoogle Scholar
  19. 19.
    Xin W, Zhu D, Liu G, Hua Y and Zhou W 2012 Int. J. Photoenergy 2012 1Google Scholar
  20. 20.
    Barakat M 2011 J. Hydro. Environ. Res. 5 137CrossRefGoogle Scholar
  21. 21.
    Zhao S, Ramakrishnan G, Shen P, Su D and Orlov A 2013 Chem. Eng. J. 217 266CrossRefGoogle Scholar
  22. 22.
    Chakrabarti S and Dutta B K 2004 J. Hazard. Mater. 112 269CrossRefGoogle Scholar
  23. 23.
    Mansouri M, Atashi H, Khalilipour M M, Setareshenas N and Shahraki F 2013 J. Korean Chem. Soc. 57 769CrossRefGoogle Scholar
  24. 24.
    Huang C R and Shu H Y 1995 J. Hazard. Mater. 41 47CrossRefGoogle Scholar
  25. 25.
    Espino-Estévez M R, Fernández-Rodríguez C, González-Díaz O M, Araña J, Espinós J P, Ortega-Méndez J A et al 2016 Chem. Eng. J. 298 82CrossRefGoogle Scholar
  26. 26.
    Muruganandham M, Shobana N and Swaminathan M 2006 J. Mol. Catal. A: Chem. 246 154CrossRefGoogle Scholar
  27. 27.
    Sakthivel S, Neppolian B, Murugesan L and Venkatakri S H 2003 Sol. Energy Mater. Sol. Cells. 77 65CrossRefGoogle Scholar
  28. 28.
    Qamar M, Saquib M and Muneer M 2005 Dyes Pigm. 65 1CrossRefGoogle Scholar
  29. 29.
    Zhu H, Jiang R, Fu Y, Guan Y, Xiaob L, Yao J et al 2012 Desalination 286 41CrossRefGoogle Scholar
  30. 30.
    Nodehi A, Atashi H and Mansouri M 2019 J. Dispersion Sci. Technol. 40 766CrossRefGoogle Scholar
  31. 31.
    Arabi A, Fazli M and Ehsani M H 2018 Bull. Mater. Sci. 41 77CrossRefGoogle Scholar
  32. 32.
    Ahmed T, Phul R, Alam P, Lone I H, Shahazad M, Ahmed J et al 2017 RSC Adv. 7 27549CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • M Mansouri
    • 1
    Email author
  • N Mozafari
    • 1
  • B Bayati
    • 1
  • N Setareshenas
    • 2
  1. 1.Department of Chemical EngineeringIlam UniversityIlamIran
  2. 2.Department of Chemical Engineering, Eyvan-e-Gharb BranchIslamic Azad UniversityEyvanIran

Personalised recommendations