Exhibition of polarization conversions with asymmetric transmission theory, natural like chiral, artificial chiral nihility and retrieval studies for K- and C-band radar applications

  • Oǧuz Derın
  • Muharrem KaraaslanEmail author
  • Emın Ünal
  • Faruk Karadağ
  • Olcay Altintaş
  • Oğuzhan Akgöl


In this study, asymmetric transmission, natural chirality phenomena and a retrieval study with chiral metamaterials (MTMs) are numerically and experimentally focussed, investigated and discussed by examining the polarization conversion effect. Suggested multi-functional designs have simple geometries (\(\pi \)-shaped), low losses and huge optical activities. In addition, these new designs are numerically and experimentally retrieved in the study. The proposed model has many advantages with respect to the asymmetric transmission and chiral MTM studies in the literature. These advantages are having simple geometries (\(\pi \)-shaped), large asymmetric transmissions, small chirality like natural materials and also huge chirality can also be provided by rotating one of the resonators. Besides, the proposed structure can be easily reconfigured for other frequency regimes to provide new chiral MTMs or can be adopted for different application areas from defence systems to stealth technology which will be examined in our future studies.


MTMs asymmetric transmission natural chirality 


  1. 1.
    Smith D R and Kroll N 2000 Phys. Rev. Lett. 85 2933CrossRefGoogle Scholar
  2. 2.
    Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J and Hajnal J V 2001 Science 291 84CrossRefGoogle Scholar
  3. 3.
    Akgol O, Unal E, Bağmancı M, Karaaslan M, Sevim U K, Ozturk M et al 2019 J. Electron. Mater. 48 2469CrossRefGoogle Scholar
  4. 4.
    Ozturk M, Akgol O, Sevim U K, Karaaslan M, Demirci M and Unal E 2018 Constr. Build. Mater. 165 58CrossRefGoogle Scholar
  5. 5.
    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B et al 2004 Science 303 1494CrossRefGoogle Scholar
  6. 6.
    Akgol O, Bağmancı M, Karaaslan M and Ünal E 2017 J. Microwave Power EA 51 134Google Scholar
  7. 7.
    Tümkaya M A, Karaaslan M and Sabah C 2018 Bull. Mater. Sci. 41 91CrossRefGoogle Scholar
  8. 8.
    Ozturk M, Sevim U K, Akgol O, Karaaslan M and Unal E 2019 Measurements 138 356CrossRefGoogle Scholar
  9. 9.
    Sabah C, Tugrul T H, Dincer F, Delihacioglu K, Karaaslan M and Unal E 2013 Prog. Electromagn. Res. 138 293CrossRefGoogle Scholar
  10. 10.
    Altintas O, Unal E, Akgol O, Karaaslan M, Karadag F and Sabah C 2017 Mod. Phys. Lett. B 31 1750274CrossRefGoogle Scholar
  11. 11.
    Bakır M, Karaaslan M, Akgol O and Sabah C 2017 Opt. Quant. Electron. 49 346CrossRefGoogle Scholar
  12. 12.
    Tang J, Xiao Z, Xu K, Ma X, Liu D and Wang Z 2016 Opt. Quant. Electron. 48 111CrossRefGoogle Scholar
  13. 13.
    Xu K K, Xiao Z Y, Tang J Y, Zheng X X and Ling X Y 2016 In progress in electromagnetic research symposium, p 2713Google Scholar
  14. 14.
    Sabah C and Roskos H G 2012 Prog. Electromagn. Res. 124 301CrossRefGoogle Scholar
  15. 15.
    Mandatori A, Bertolotti M and Sibilia C 2007 JOSA B 24 685CrossRefGoogle Scholar
  16. 16.
    Serebryannikov A E and Lakhtakia A 2013 Opt. Lett. 38 3279CrossRefGoogle Scholar
  17. 17.
    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401CrossRefGoogle Scholar
  18. 18.
    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T et al 2010 Phys. Rev. Lett. 104 253902CrossRefGoogle Scholar
  19. 19.
    Huang C, Feng Y, Zhao J, Wang Z and Jiang T 2012 Phys. Rev. 85 195131CrossRefGoogle Scholar
  20. 20.
    Huang C, Zhao J, Jiang T and Feng Y 2012 J. Electromagnet. Wave 26 1192CrossRefGoogle Scholar
  21. 21.
    Dincer F, Karaaslan M, Unal E, Delihacioglu K and Sabah C 2014 Prog. Electromagn. Res. 144 123CrossRefGoogle Scholar
  22. 22.
    Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M et al 2009 Phys. Rev. 79 035407CrossRefGoogle Scholar
  23. 23.
    Wang B, Zhou J, Koschny T, Kafesaki M and Soukoulis C M 2006 J. Opt. A-Pure Appl. 11 114003CrossRefGoogle Scholar
  24. 24.
    Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M et al 2009 Phys. Rev. B 79 035407CrossRefGoogle Scholar
  25. 25.
    Zhao R, Zhang L, Zhou J, Koschny T and Soukoulis C M 2011 Phys. Rev. B 83 035105CrossRefGoogle Scholar
  26. 26.
    Zhao R, Koschny T and Soukoulis C M 2010 Opt. Express 18 14553CrossRefGoogle Scholar
  27. 27.
    Ye Y and He S 2010 Appl. Phys. Lett. 96 203501CrossRefGoogle Scholar
  28. 28.
    Li Z, Caglayan H, Colak E, Zhou J, Soukoulis C M and Ozbay E 2010 Opt. Express 18 5375CrossRefGoogle Scholar
  29. 29.
    Li Z, Alici K B, Colak E and Ozbay E 2011 Appl. Phys. Lett. 98 161907CrossRefGoogle Scholar
  30. 30.
    Sonsilphong A and Wongkasem N 2012 Int. J. Phys. Sci. 7 2829Google Scholar
  31. 31.
    Demarest K R 1997 Engineering electromagnetics (New Jersey: Prentice Hall) 1st ednGoogle Scholar
  32. 32.
    Feynman R P, Leighton R B and Sands M 1963 The Feynman lecture on physics (Boston: Addison-Wesley Pub. Co.) 1st edn vol 1Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Vocational School of Technical SciencesMersin UniversityMersinTurkey
  2. 2.Department of Electrical and Electronics EngineeringIskenderun Technical UniversityHatayTurkey
  3. 3.Department of PhysicsÇukurova UniversityAdanaTurkey

Personalised recommendations