Advertisement

Graphene-nanoparticle incorporated responsivity tuning of p-CuO/n-Si-based heterojunction photodetectors

  • Jenifar Sultana
  • Anannya Bhattacharya
  • Anupam Karmakar
  • Goutam K Dalapati
  • Sanatan ChattopadhyayEmail author
Article
  • 7 Downloads

Abstract

The current work focusses on investigating the appropriate wt% of graphene-nanoparticles to be incorporated into the CuO film as a dopant for enhancing its optoelectronic properties. CuO and graphene-nanoparticle-incorporated CuO films (CG) are grown by employing a chemical bath deposition (CBD) method. Graphene-nanoparticles have been incorporated at different wt% (1, 5 and 10%) with respect to the metal salt (\(\hbox {CuCl}_{{2}}{\cdot }\hbox {2H}_{{2}}\hbox {O}\)), and a comparative study has been performed on the systematic change of the film morphology, chemical composition, oxidation states, crystallite structures and photo-sensing effects. It has been found that the morphology and the structural properties of CBD grown CuO films have been tuned by the incorporation of graphene-nanoparticles. The results show a significant enhancement in the optoelectronic properties of CG1 (1%) and CG5 (5%) films. The optical properties of the as-grown films have been observed to be modified by graphene-nanoparticle incorporation. Moreover, the electronic and optoelectronic characteristics of the fabricated p-CuO/n-Si heterojunctions have also been investigated. The enhancement of the optoelectronic properties of the CG5 sample as compared to other grown films in the present study suggests that the responsivity and photodetecting properties of the CBD grown CuO films can be improved by graphene-nanoparticle incorporation.

Keywords

Graphene-nanoparticle CuO CBD responsivity photodetector 

Notes

Acknowledgements

Miss Jenifar Sultana likes to acknowledge the Department of Science and Technology (DST), India, for providing inspire fellowship to pursue her research. We would also like to acknowledge the DST Purse program and Center of Excellence (COE), TEQIP, for providing infrastructure and financial support to conduct this work.

References

  1. 1.
    Kim C O, Kim S, Shin D H, Kang S S, Kim J M, Jang C W et al 2014 Nat. Commun. 5 3249CrossRefGoogle Scholar
  2. 2.
    Manders J R, Lai T H, An Y, Xu W, Lee J, Kim D Y et al 2014 Adv. Funct. Mater. 24 7205Google Scholar
  3. 3.
    Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y et al 2015 Adv. Funct. Mater. 25 2910CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Liao Q, Yu Y, Wang X and Zhang Y 2014 Nano Energy 9 237CrossRefGoogle Scholar
  5. 5.
    Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J et al 2015 Nat. Nanotechnol. 10 707CrossRefGoogle Scholar
  6. 6.
    Su G, Hadjiev V G, Loya P E, Zhang J, Lei S, Maharajan S et al 2015 Nano Lett. 15 506CrossRefGoogle Scholar
  7. 7.
    Zhao C, Liang Z, Su M, Liu P, Mai W and Xie W 2015 ACS Appl. Mater. Interfaces 7 25981CrossRefGoogle Scholar
  8. 8.
    Sultana J, Paul S, Karmakar A, Yi R, Dalapati G K and Chattopadhyay S 2017 Appl. Surf. Sci. 418 380CrossRefGoogle Scholar
  9. 9.
    Sultana J, Paul S, Karmakar A, Dalapati G K and Chattopadhyay S 2018 J. Mater. Sci.: Mater. Electron. 29 12878CrossRefGoogle Scholar
  10. 10.
    Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502CrossRefGoogle Scholar
  11. 11.
    Mahalingam T, Chitra J S P, Chu J P, Moon H, Kwon H J and Kim Y D 2006 J. Mater. Sci.: Mater. Electron. 17 519CrossRefGoogle Scholar
  12. 12.
    Jin Z, Zhang X, Li Y, Li S and Lu G 2007 Catal. Commun. 8 1267CrossRefGoogle Scholar
  13. 13.
    Fu L, Gao J, Zhang T, Cao Q, Yang L C, Wu Y P et al 2007 J. Power Sources 171 904CrossRefGoogle Scholar
  14. 14.
    Nakamura Y, Zhuang H, Kishimoto A, Okada O and Yanagida H 1998 J. Electrochem. Soc. 145 632CrossRefGoogle Scholar
  15. 15.
    Chen J, Huang N Y, Deng S Z, She J C, Xu N S, Zhang W X et al 2005 Appl. Phys. Lett. 86 157CrossRefGoogle Scholar
  16. 16.
    Sultana J, Das A, Das A, Saha N R, Karmakar A and Chattopadhyay S 2016 Thin Solid Films 612 331CrossRefGoogle Scholar
  17. 17.
    Christie E A 1970 Proceedings of International Solar Energy Society Conference, pp 1–7Google Scholar
  18. 18.
    Musa A O, Akomolafe T and Carter M J 1998 Sol. Energy Mater. Sol. Cells 51 305CrossRefGoogle Scholar
  19. 19.
    Brookshier M A, Chusuei C C and Goodman D W 1999 Langmuir 15 2043CrossRefGoogle Scholar
  20. 20.
    Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z et al 1999 J. Solid State Chem. 147 516CrossRefGoogle Scholar
  21. 21.
    Su Y K, Shen C M, Yang H T, Li L and Gao H J 2007 Trans. Nonferr. Met. Soc. China 17 783CrossRefGoogle Scholar
  22. 22.
    Tang X L, Ren L, Sun L N, Tian W G, Cao M H and Hu C W 2006 Chem. Res. Chin. Univ. 22 547CrossRefGoogle Scholar
  23. 23.
    Yuan C O, Jiang H F, Lin C and Liao S J 2007 J. Cryst. Growth 303 400CrossRefGoogle Scholar
  24. 24.
    Chen J T, Zhang F, Wang J, Zhang G A, Mian B B, Fan X Y et al 2008 J. Alloys Compd. 454 268CrossRefGoogle Scholar
  25. 25.
    Nair P K, Nair M T S, Garcia V M, Arenas O L, Pena Y, Castillo A et al 1998 Sol. Energy Mater. Sol. Cells 52 313CrossRefGoogle Scholar
  26. 26.
    Nair P K, Parmananda P and Nair M T S 1999 J. Cryst. Growth 206 68CrossRefGoogle Scholar
  27. 27.
    Lancellotti L, Polichetti T, Ricciardella F, Tari O, Gnanapragasam S, Daliento S et al 2012 Thin Solid Films 522 390CrossRefGoogle Scholar
  28. 28.
    Wu Z S, Zhou G, Yin L C, Ren Y, Li F and Cheng H M 2012 Nano Energy 1 107CrossRefGoogle Scholar
  29. 29.
    Tran P D, Batabyal S K, Pramana S S, Barber J, Wong L H and Loo S C J 2012 Nanoscale 4 3875CrossRefGoogle Scholar
  30. 30.
    Panah S M, Kakran M, Lim Y F, Chua C S, Tan H R and Dalapati G K 2016 J. Renew. Sustain. Energy 8 043507CrossRefGoogle Scholar
  31. 31.
    Liua X, Pana L, Zhaob Q, Lva T, Zhua G, Chena T et al 2012 Chem. Eng. J. 183 238CrossRefGoogle Scholar
  32. 32.
    Zhao B, Liu P, Zhuang H, Jiao Z, Fang T, Xu W et al 2013 J. Mater. Chem. A 1 367Google Scholar
  33. 33.
    Saito R, Dresselhaus G and Dresselhaus M S 2005 Physical properties of carbon nanotubes (London: Imperial College Press) 2nd ednGoogle Scholar
  34. 34.
    Avila A F, Peixoto L G Z, Neto A S, Junior J and Carvalho M G R 2012 J. Braz. Soc. Mech. Sci. Eng. 3 269CrossRefGoogle Scholar
  35. 35.
    Desimoni E and Brunetti B 2015 Chemosensors 3 70CrossRefGoogle Scholar
  36. 36.
    Lai Q, Zhu S, Luo X, Zou M and Huang S 2012 AIP Adv. 2 032146CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Jenifar Sultana
    • 1
  • Anannya Bhattacharya
    • 2
  • Anupam Karmakar
    • 2
  • Goutam K Dalapati
    • 3
  • Sanatan Chattopadhyay
    • 2
    Email author
  1. 1.Centre for Research in Nanoscience and Nanotechnology (CRNN)KolkataIndia
  2. 2.Department of Electronic ScienceUniversity of CalcuttaKolkataIndia
  3. 3.Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations