Efficient heat conducting liquid metal/CNT pads with thermal interface materials

  • Liuying ZhaoEmail author
  • Sheng Chu
  • Xuechen Chen
  • Guang Chu


Ga-Based thermal interface material (TIM) pads/sheets with high thermal conductivity (\(\kappa \)) are indispensable components in thermal management systems. Here, we present a feasible method to fabricate heat conduction pads, which are composed of carbon nanotubes embedded into a liquid metal (LM). This setup has resulted in a large increase of \(\kappa \) reaching \(\sim \)14.2 \(\hbox {W mK}^{-1}\), greater than that of most of the commercial thermal silicone pads (\({\sim }5~\hbox {W mK}^{-1})\). In addition, a series of experiments were conducted on smartphones to evaluate the heat dissipation performance of the CPU. It turned out that LM/nanotube pads with TIMs show distinguish thermal conductivity performance.


Liquid metal gallium oxide carbon nanotubes thermal conductivity heat-dissipation 



The authors acknowledge financial support from the National Science Foundation of China (Grant Nos. 11204097 and U1530120).

Supplementary material

12034_2019_1872_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (docx 1129 KB)


  1. 1.
    David G C, Wayne K F, Kenneth E G, Gerald D M, Majumdar A, Humphrey J M et al 2003 J. Appl. Phys. 93 793CrossRefGoogle Scholar
  2. 2.
    Prasher R 2006 Proc. IEEE 94 1571CrossRefGoogle Scholar
  3. 3.
    Andrew J M, Joshi Y K and Zhang Z M M 2012 Int. J. Therm. Sci. 62 2CrossRefGoogle Scholar
  4. 4.
    Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310CrossRefGoogle Scholar
  5. 5.
    Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M and Ameloot R 2017 Chem. Soc. Rev. 46 3185CrossRefGoogle Scholar
  6. 6.
    Cohen A B, Kraus A D and Davidson S F 1983 Equip. Mech. Eng. 53 150Google Scholar
  7. 7.
    Kraus A D and Cohen A B 1983 Thermal analysis and control of electronic equipment (Washington, DC: Hemisphere Publishing Corp)Google Scholar
  8. 8.
    Xu Y S, Luo X C and Chung D D L 2002 J. Electron. Packag. 124 188CrossRefGoogle Scholar
  9. 9.
    Wolff E G and Schneider D A 1998 Int. J. Heat Mass Transfer 41 3469CrossRefGoogle Scholar
  10. 10.
    Gwinn J P and Webb R L 2003 J. Microelectron. 34 215CrossRefGoogle Scholar
  11. 11.
    Yang D J, Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G et al 2002 Phys. Rev. B 66 1Google Scholar
  12. 12.
    Nieh H M, Teng T and Yu C C 2014 Int. J. Therm. Sci. 77 252CrossRefGoogle Scholar
  13. 13.
    Alshaer W G, Nada S A, Rady M A, Barrio E P D and Sommier A 2015 Int J. Therm. Sci. 89 79CrossRefGoogle Scholar
  14. 14.
    Lin Z Y, Liu H Q, Li Q G, Liu H, Chu S and Yang Y H 2018 Appl. Phys. A 124 1Google Scholar
  15. 15.
    Zhou W Y, Qi S H, Tu C C, Zhao H Z, Wang C F and Kou J L 2007 Appl. Polym. Sci. 104 1312CrossRefGoogle Scholar
  16. 16.
    Hill R F and Supancic P H 2002 J. Am. Ceram. Soc. 85 851CrossRefGoogle Scholar
  17. 17.
    Yung K C and Liem H 2007 J. Appl. Polym. Sci. 106 3587CrossRefGoogle Scholar
  18. 18.
    Zhi C Y, Bando Y S, Terao T, Tang C C, Kuwahara H and Golberg D 2009 Adv. Funct. Mater. 19 1857CrossRefGoogle Scholar
  19. 19.
    Lee E S, Lee S M, Shanefield D J and Cannon W R 2008 J. Am. Ceram. Soc. 91 1169CrossRefGoogle Scholar
  20. 20.
    Wang Q, Gao W and Xie Z M 2003 J. Appl. Polym. Sci. 89 2397CrossRefGoogle Scholar
  21. 21.
    Leea G W, Parka M, Kima J, Leeb J I and Yoon H 2006 Compos. A: Appl. Sci. Manuf. 37 727Google Scholar
  22. 22.
    Yu W, Xie H Q, Yin L Q, Zhao J C, Xia L G and Chen L F 2015 Int. J. Therm. Sci. 91 76CrossRefGoogle Scholar
  23. 23.
    Bartlett M D, Kazem N, Powell P M J, Huang X N, Sun W H, Malen J A M et al 2017 PANS 13 1Google Scholar
  24. 24.
    Liang S Q, Li Y Y, Chen Y Z, Yang J B, Zhu T P, Zhu D Y et al 2017 J. Mater. Chem. C 5 15867Google Scholar
  25. 25.
    Zhu S, So J H, Mays R, Desai S, Barnes W R, Pourdeyhimi B et al 2013 Adv. Funct. Mater. 23 2308CrossRefGoogle Scholar
  26. 26.
    Khan M R, Hayes G J, Zhang S L, Michael D D and Lazzi G 2012 IEEE Microw. Wirel. Compon. Lett. 22 577CrossRefGoogle Scholar
  27. 27.
    Khoshmanesh K, Tang S Y, Zhu J Y, Schaefer S, Mitchell A and Kourosh K Z 2017 Lab Chip. 17 974CrossRefGoogle Scholar
  28. 28.
    Larsson D H, Lundström U, Westermark U K, Henriksson M A, Burvall A and Hans M H 2013 Med. Phys. 40 021909CrossRefGoogle Scholar
  29. 29.
    Yang X H and Liu J 2018 Front. Energy 12 259CrossRefGoogle Scholar
  30. 30.
    Ge H S, Li H Y, Mei S F and Liu J 2013 Renew. Sustain. Energy Rev. 21 331CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhao X J, Cai Y X, Zhang C and Bao W W 2015 Energy Convers. Manage. 101 532CrossRefGoogle Scholar
  32. 32.
    Zhao L Y, Liu H Q, Chen X C, Chu S, Liu H, Lin Z Y et al 2018 JMCC 6 10611Google Scholar
  33. 33.
    Iijima S 1991 Nature 354 56CrossRefGoogle Scholar
  34. 34.
    Wang Q and Arash B 2014 Comput. Mater. Sci. 82 350CrossRefGoogle Scholar
  35. 35.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al 2014 Nanoscale Res. Lett. 9 1Google Scholar
  36. 36.
    Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y et al 2016 Prog. Polym. Sci. 59 41CrossRefGoogle Scholar
  37. 37.
    Hong W T and Tai N H 2008 Diam. Relat. Mater. 17 1577CrossRefGoogle Scholar
  38. 38.
    Lin W, Moon K S and Wong C P 2009 Adv. Mater. 21 2421CrossRefGoogle Scholar
  39. 39.
    Gou Y J, Liu Z L, Zhang G M and Li Y X 2014 Int. J. Heat Mass Transfer 74 358CrossRefGoogle Scholar
  40. 40.
    Stroscio M A, Dutta M, Kahn D and Kim K W 2001 Superlattices Microstruct. 29 405CrossRefGoogle Scholar
  41. 41.
    Grujicic M and Cao B G 2004 Mater. Sci. Eng. B 107 204CrossRefGoogle Scholar
  42. 42.
    Hepplestone S P, Ciavarella A M, Janke C and Srivastava G P 2006 Surf. Sci. 600 3633CrossRefGoogle Scholar
  43. 43.
    Nan C W, Shi Z and Lin Y 2003 Chem. Phys. Lett. 375 666CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Liuying Zhao
    • 1
    • 2
    Email author
  • Sheng Chu
    • 1
    • 2
  • Xuechen Chen
    • 1
    • 3
  • Guang Chu
    • 4
  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Material Science and EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Electronics and Information TechnologySun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  4. 4.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations