Advertisement

Hydrothermal synthesis of spindle-like \({\hbox {SrMoO}}_{4}{:}{\hbox {Ln}}^{3+}\) (Ln = Eu and Tb) microarchitectures for selectively detecting \({\hbox {Fe}}^{3+}\) ions

  • Liyong WangEmail author
  • Xue Jiang
  • Xue Wang
  • Nan Wang
  • Qingwei Song
  • Yuanyuan Han
  • Jie Du
Article
  • 15 Downloads

Abstract

In this work, spindle-like micrometre \({\hbox {SrMoO}}_{4}{:}{\hbox {Ln}}^{3+}\) (Tb, Eu) phosphors have been synthesized and designed as a fluorescent sensor for \({\hbox {Fe}}^{3+}\) ions assay. The structural information, morphologies and luminescence properties of the samples were characterized by X-ray diffraction, Fourier-transform infrared, Raman analysis, field-emission scanning electron microscopy and photoluminescence patterns. Furthermore, \({\hbox {Fe}}^{3+}\) ions could be immediately detected using fluorescence quenching methods, and this method shows excellent and satisfying sensitivity. This facile method could be extended to environmental and biological applications.

Keywords

Fluorescent sensor \({\hbox {Fe}}^{3+}\) detection hydrothermal method photoluminescence 

Notes

Acknowledgements

This study was funded by the Project of Medical disciplines construction funds of Hebei University (grant no. 2015A2004), Students Research Fund of Hebei University (2016066, 2017012) and Natural Science Foundation of Hebei University (grant no. 2013-254).

References

  1. 1.
    Singh E, Meyyappan M and Nalwa H S 2017 ACS Appl. Mater. Inter. 9 34544CrossRefGoogle Scholar
  2. 2.
    Lin X and Fan X 2011 Solid State Sci. 13 579CrossRefGoogle Scholar
  3. 3.
    Luitel H, Chand R and Watari T 2015 Displays 42 18Google Scholar
  4. 4.
    Zhu D S, Wang C K and Jiang F 2017 J. Lumin. 192 1235CrossRefGoogle Scholar
  5. 5.
    Chun F J, Zhang B B, Su H, Osman H, Deng W, Deng W L et al 2017 J. Lumin. 190 69CrossRefGoogle Scholar
  6. 6.
    Rendón-Angeles J C, Matamoros-Veloza Z, Gonzalez L A, López-Cuevas J, Ueda T, Yanagisawa K et al 2016 Adv. Powder Technol. 28 629CrossRefGoogle Scholar
  7. 7.
    Sun Y, Ma J F, Fang J, Gao C and Liu Z 2011 Inorg. Chem. Commun. 14 1221CrossRefGoogle Scholar
  8. 8.
    Thongtem T, Phuruangrat A and Thongtem S 2010 J. Nanoparticle Res. 12 2287CrossRefGoogle Scholar
  9. 9.
    Wang Y G, Yang L L, Wang Y J, Wang X F and Han G R 2012 J. Ceram. Soc. Jpn. 120 378CrossRefGoogle Scholar
  10. 10.
    Mukherjee J, Dutta D P, Ramakumar J and Tyagi A K 2016 J. Environ. Chem. Eng. 4 3050CrossRefGoogle Scholar
  11. 11.
    Thongtem T, Kungwankunakorn S, Kuntalue B, Phuruangrat A and Thongtem S 2010 J. Alloys Compd. 506 475CrossRefGoogle Scholar
  12. 12.
    Li L L, Li R Q, Zi W W and Gan S C 2015 Physica B 458 817CrossRefGoogle Scholar
  13. 13.
    Wang X F, Peng G H, Li N, Liang Z H, Wang X and Wu J L 2014 J. Alloys Compd. 599 102CrossRefGoogle Scholar
  14. 14.
    Ho A A A, Chang H C and Su W T 2012 Anal. Chem. 84 3246CrossRefGoogle Scholar
  15. 15.
    Absalan G and Nekoeinia M 2005 Anal. Chim. Acta 531 293CrossRefGoogle Scholar
  16. 16.
    Cui Y M, Chang X J, Zhu X B, Jiang N, Hu Z and Lian N 2007 Microchem. J. 86 23CrossRefGoogle Scholar
  17. 17.
    Hosseini M S, Raissi H and Madarshahian S 2006 React. Funct. Polym. 66 1539CrossRefGoogle Scholar
  18. 18.
    Mishra V, Das M K, Jeyakumar S, Sawant R M and Ramakumar K L 2011 Am. J. Anal. Chem. 2 46CrossRefGoogle Scholar
  19. 19.
    Du Y, Song N Z, Lv X J, Hu B, Zhou W H and Jia Q 2017 Dyes Pigments 138 1522CrossRefGoogle Scholar
  20. 20.
    Long L L, Zhou L P, Wang L, Meng S C, Gong A H and Zhang C 2014 Anal. Chim. Acta 812 145CrossRefGoogle Scholar
  21. 21.
    Li C S, Tang C C, Xing L T, Sun B, Cheng S Y, Liao Q et al 2014 Luminescence 32 1051CrossRefGoogle Scholar
  22. 22.
    Han Y Y, Wang L Y, Wang D, Liang D Y, Wang S Q, Lu G X et al 2017 J. Alloys Compd. 695 3018CrossRefGoogle Scholar
  23. 23.
    Lv Y, Zhang H, Cao G P, Wang B Y and Wang X D 2011 Mater. Bull. Mater. 46 2312CrossRefGoogle Scholar
  24. 24.
    Dabbagh H A and Shahraki M 2013 Micropor. Mesopor. Mater. 175 8CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Yan N and Feng M W 2013 Thermochim. Acta 555 46CrossRefGoogle Scholar
  26. 26.
    Cho Y S and Huh Y D 2015 B. Korean. Chem. Soc. 36 282CrossRefGoogle Scholar
  27. 27.
    Wang Y J, Xu H, Shao C Y and Cao J 2017 Appl. Surf. Sci. 392 649CrossRefGoogle Scholar
  28. 28.
    Ansari A A and Alam M 2015 J. Lumin. 157 257CrossRefGoogle Scholar
  29. 29.
    Zhang J J, Li R Q, Liu L, Li L L, Zou L C, Gan S C et al 2014 Ultrason. Sonochem. 21 1736CrossRefGoogle Scholar
  30. 30.
    Zheng H J, Wei R P, Gao X P, Liu W S and Pang C R 2011 Opt. Mater. 33 909CrossRefGoogle Scholar
  31. 31.
    Tyminski J K, Lawson C M and Powell R C 1982 J. Chem. Phys. 77 4318CrossRefGoogle Scholar
  32. 32.
    Paradelas S M V, Gonçalves R F, Motta F V, Lima R C, Li M S, Longo E et al 2017 J. Lumin. 192 818CrossRefGoogle Scholar
  33. 33.
    Sczancoski J C, Cavalcante L S, Joya M R, Varela J A, Pizani P S and Longo E 2008 Chem. Eng. J. 140 632CrossRefGoogle Scholar
  34. 34.
    Cao R P, Chen K B, Liu P, Cao C Y, Xu Y C, Ao H et al 2015 J. Biolumin. Chemilumin. 30 962Google Scholar
  35. 35.
    Sarkar S, Chatti M, Adusumalli V N K B and Mahalingam V 2015 ACS Appl. Mater. Interfaces 7 25702CrossRefGoogle Scholar
  36. 36.
    Mei Q, Jiang C L, Guan G J, Zhang K, Liu B H, Liu R Y et al 2012 Chem. Commun. 48 7468CrossRefGoogle Scholar
  37. 37.
    Du Y Y, Chen M, Zhang Y X, Luo F, He C Y, Li M J et al 2013 Talanta 106 261265CrossRefGoogle Scholar
  38. 38.
    Kim Y S, Lee J J, Lee S Y, Jo T G and Kim C 2016 RSC Adv. 6 61505CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environmental Science, Key Laboratory of Medicine Chemistry and Molecular Diagnosis, Ministry of EducationHebei UniversityBaodingPeople’s Republic of China
  2. 2.Medical Experimental Centre of Hebei UniversityBaodingPeople’s Republic of China

Personalised recommendations