Advertisement

In situ forming hydrogels based on polyethylene glycol itaconate for tissue engineering application

  • Mehrnoosh Hasan Shahriari
  • Mohammad Ali ShokrgozarEmail author
  • Shahin Bonakdar
  • Farzad Yousefi
  • Babak Negahdari
  • Hamid Yeganeh
Article
  • 20 Downloads

Abstract

Novel strategies have been proposed to enhance the quality of surgery by scheming noninvasive methods. For this reason, photo-curable in situ forming hydrogels have been well developed during advancements in the regenerative medicine. In this study, polyethylene glycol itaconate (PEGI) was synthesized by reacting polyethylene glycol (PEG) with different molecular weights (1000, 4000 and 8000 \(\hbox {g mol}^{-1}\)) and itaconyl chloride. The synthesized PEGIs were fully characterized and employed as a macromonomer for the preparation of in situ forming hydrogels using a combination of camphorquinone and dimethylaminoethyl methacrylate as a reactive photoinitiator system, and hydroxyethyl methacrylate as a reactive diluent. The physical properties of the hydrogels including gel yield, equilibrium swelling and compressive strength were determined. The hydrogel based on PEG 4000 with a gel yield of 86%, a water uptake of 103%, a compressive modulus of 11.2 MPa, an elongation at break of 9% and a curing time of 4 min was selected for the encapsulation of rabbit articular chondrocyte cells. The cytocompatibility of the in situ formed hydrogels was evaluated using 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, live-dead fluorescence assays and optical microscopy observations. Glycosaminoglycans were quantified by dimethylmethylene blue staining from the encapsulated chondrocytes after 14 days. The proposed in situ forming hydrogel can be considered as an injectable and photocurable carrier for cell delivery in cartilage tissue engineering.

Graphical abstract

Keywords

Polyethylene glycol itaconate chondrocyte in situ forming hydrogel tissue engineering 

Notes

Acknowledgements

The authors would like to express their appreciation to Pasteur Institute for their financial assistance. This study was supported by the research projects No. 370 and 498.

References

  1. 1.
    Zhang Y, Cai X, Yao J, Xing W, Wang L and Xia Y 2014 Angew. Chem. Int. Ed. 53 184CrossRefGoogle Scholar
  2. 2.
    Hoffman A 2012 Adv. Drug. Deliv. Rev. 64 18CrossRefGoogle Scholar
  3. 3.
    Nguyen K and West J 2002 Biomaterials 23 4307CrossRefGoogle Scholar
  4. 4.
    Burkoth A and Anseth K 2000 Biomaterials 21 2395CrossRefGoogle Scholar
  5. 5.
    Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M and Langer R 1999 Proc. Natl. Acad. Sci. USA 96 3104CrossRefGoogle Scholar
  6. 6.
    Koushki N, Katbab A, Tavassoli H, Jahanbakhsh A, Majidi M and Bonakdar S 2015 RSC Adv. 5 9089CrossRefGoogle Scholar
  7. 7.
    Slaughter B, Khurshid S, Fisher O, Khademhosseini A and Peppas N 2009 Adv. Mater. 21 3307CrossRefGoogle Scholar
  8. 8.
    Kinard L, Kasper F and Mikos A 2012 Nat. Protoc. 7 1219CrossRefGoogle Scholar
  9. 9.
    Benoit D, Schwartz M, Durney A and Anseth K 2008 Nat. Mater. 7 816CrossRefGoogle Scholar
  10. 10.
    Escudero-Castellanos A, Ocampo-García B, Domínguez-García M, Flores-Estrada J and Flores-Merino M 2016 J. Mater. Sci. Mater. Med. 27 176CrossRefGoogle Scholar
  11. 11.
    Sharifi S, Imani M, Mirzadeh H, Atai M, Ziaee F and Bakhshi R 2009 J. Biomed. Mater. Res. A 90 830CrossRefGoogle Scholar
  12. 12.
    Bryant S and Anseth K 2002 J. Biomed. Mater. Res. A 59 63CrossRefGoogle Scholar
  13. 13.
    Yang F, Williams C G, Wang D, Lee H, Manson P and Elisseeff J 2005 Biomaterials 26 5991CrossRefGoogle Scholar
  14. 14.
    Sharifi S, Mirzadeh H, Imani M, Ziaee F, Tajabadi M, Jamshidi A et al 2008 Polym. Adv. Technol. 19 1828CrossRefGoogle Scholar
  15. 15.
    Ifkovits J and Burdick J 2007 J. Tissue Eng. Regen. Med. 13 2369CrossRefGoogle Scholar
  16. 16.
    Hatefi A and Amsden B 2002 J. Control. Release 80 9CrossRefGoogle Scholar
  17. 17.
    Zada A, Avny Y and Zilkha A 1999 Eur. Polym. J. 35 1159CrossRefGoogle Scholar
  18. 18.
    Shete A U, El-Zaatari B, French J M and Kloxin C 2016 Chem. Commun. (Camb) 52 10574CrossRefGoogle Scholar
  19. 19.
    Lima G, Ogliari F, Souza e Silva M, Münchow E, Petzhold C and Piva E 2013 J. Appl. Polym. Sci. 127 4160Google Scholar
  20. 20.
    Yu Q, Nauman S, Santerre J and Zhu S 2001 J. Appl. Polym. Sci. 82 1107CrossRefGoogle Scholar
  21. 21.
    Andrzejewska E, Lindén L and Rabek J 1998 Macromol. Chem. Phys. 199 441CrossRefGoogle Scholar
  22. 22.
    Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M and Nahara Y 2003 Biomaterials 24 2097CrossRefGoogle Scholar
  23. 23.
    Johnson L, DeForest C, Pendurti A, Anseth K and Bowman C 2010 ACS Appl. Mater. Interfaces 2 1963CrossRefGoogle Scholar
  24. 24.
    Holland T A, Tabata Y and Mikos A G 2005 J. Control. Release 101 111CrossRefGoogle Scholar
  25. 25.
    Temenoff J S, Athanasiou K, Lebaron R and Mikos A 2002 J. Biomed. Mater. Res. B Appl. Biomater. 59 429CrossRefGoogle Scholar
  26. 26.
    Veronese F 2001 Biomaterials 22 405CrossRefGoogle Scholar
  27. 27.
    Cruise G M, Scharp D S and Hubbell J 1998 Biomaterials 19 1287CrossRefGoogle Scholar
  28. 28.
    Betancourt T, Pardo J, Soo K and Peppas N A 2010 J. Biomed. Mater. Res. 93 175Google Scholar
  29. 29.
    Teijon C, Guerrero S, Olmo R, Teijon J and Blanco M 2009 J. Biomed. Mater. Res. B 91 716CrossRefGoogle Scholar
  30. 30.
    Sharifi S, Shafieyan Y, Mirzadeh H, Bagheri-Khoulenjani S, Rabiee S, Imani M et al 2011 J. Biomed. Mater. Res. A 98 257CrossRefGoogle Scholar
  31. 31.
    Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar M A and Bonakdar S 2013 Mater. Sci. Eng. C 33 4786CrossRefGoogle Scholar
  32. 32.
    Bonakdar S, Emami S H, Shokrgozar M A, Farhadi A, Ahmadi S A and Amanzadeh A 2010 Mater. Sci. Eng. C 30 636CrossRefGoogle Scholar
  33. 33.
    Darvishi A, Zohuriaan-Mehr M J, Bagheri-Marandi G, Kabiri K, Bouhendi H and Bakhshi H 2013 Des. Monomers Polym. 16 79CrossRefGoogle Scholar
  34. 34.
    Okino H, Nakayama Y, Tanaka M and Matsuda T 2002 J. Biomed. Mater. Res. B Appl. Biomater. 59 233CrossRefGoogle Scholar
  35. 35.
    Nogueira N, Conde O, Minones M, Trillo J and Minones J 2012 J. Colloid Interface Sci. 385 202CrossRefGoogle Scholar
  36. 36.
    Bircher A, Friederich N F, Seelig W and Scherer K 2012 Contact Dermat. 66 20CrossRefGoogle Scholar
  37. 37.
    Becher R, Kopperud H, Al R H, Samuelsen J, Morisbak E, Dahlman H J et al 2006 Dent. Mater. 22 630CrossRefGoogle Scholar
  38. 38.
    Wang Y, Spencer P, Yao X and Ye Q 2006 J. Biomed. Mater. Res. A 78 721CrossRefGoogle Scholar
  39. 39.
    Atsumi T, Iwakura I, Fujisawa S and Ueha T 2001 Arch. Oral. Biol. 46 391CrossRefGoogle Scholar
  40. 40.
    Winter K, Pagoria D and Geurtsen W 2005 Biomaterials 26 5321CrossRefGoogle Scholar
  41. 41.
    Arima T, Hamada T and McCabe J 1995 J. Dent. Res. 74 1597CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mehrnoosh Hasan Shahriari
    • 1
  • Mohammad Ali Shokrgozar
    • 2
    Email author
  • Shahin Bonakdar
    • 1
    • 2
  • Farzad Yousefi
    • 2
  • Babak Negahdari
    • 3
  • Hamid Yeganeh
    • 4
  1. 1.Department of Biomaterials, Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.National Cell Bank DepartmentPasteur Institute of IranTehranIran
  3. 3.Advanced Technologies in MedicineTehran University of Medical ScienceTehranIran
  4. 4.Polyurethane DepartmentIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations