Advertisement

\(\hbox {Fe}/\hbox {Fe}_{3}\hbox {O}_{4}\) nanocomposite powders with giant high magnetization values by high energy ball milling

  • V Ramya
  • A Gangwar
  • S K Shaw
  • N K Mukhopadhyay
  • N K PrasadEmail author
Article
  • 33 Downloads

Abstract

The present work reports on the relatively higher saturation magnetization values of \(\hbox {Fe}/\hbox {Fe}_{3}\hbox {O}_{4}\) nanocomposites. For example, the nanocomposites of Fe obtained after milling for 10 h with 5, 10 and 15 wt% of \(\hbox {Fe}_{3}\hbox {O}_{4}\) had displayed saturation magnetization values of 210, 238 and \(216\,\hbox {Am}^{2}\,\hbox {kg}^{-1}\), respectively, in contrast to \(218\,\hbox {Am}^{2}\,\hbox {kg}^{-1}\) of bulk Fe. Similarly, the maximum magnetization values for the nanocomposites after 20 and 30 h of milling were 215 and \(190\,\hbox {Am}^{2}\,\hbox {kg}^{-1}\) for the sample containing 5 and 15 wt% of \(\hbox {Fe}_{3}\hbox {O}_{4}\), respectively. The values of \(H_{\mathrm{C}}\) and \(M_{\mathrm{r}}\) suggest that nanocomposites exhibit soft ferromagnetic behaviour. The ball milling also reduced the crystallite and particle size of Fe from microndimension to nanometres. This was confirmed from X-ray diffraction, transmission electron microscopy and scanning electron microscopy analyses. The crystallite size of pure Fe decreased to 35, 20 and 19 nm, respectively, for the samples having 5, 10 and 15 wt% of \(\hbox {Fe}_{3}\hbox {O}_{4}\) after 10 h of milling. The crystallite size decreased further with increased milling time.

Keywords

Nanocomposites high energy ball mill \(\hbox {Fe}_{3}\hbox {O}_{4}\) magnetization 

References

  1. 1.
    Camargo P H C, Satyanarayana K G and Wypych F 2009 Mater. Res. 12 1CrossRefGoogle Scholar
  2. 2.
    Rowe M P 2015 US Patent and Trademark Office U.S. Patent No. 9,093,205B2 (Washington, DC)Google Scholar
  3. 3.
    Prischepa S L, Danilyuk A L, Prudnikava A L, Komissarov I V, Labunov V A, Yanushkevich K I 2014 in: Nanomagnetism J M Gonzalez Estevez (ed) (Manchester, UK: One Central Press) 227Google Scholar
  4. 4.
    Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812CrossRefGoogle Scholar
  5. 5.
    Kapoor M and Victora R H 2007 IEEE Trans. Mag. 43 2289CrossRefGoogle Scholar
  6. 6.
    Lee J H, Jang J T, Choi J S, Moon S H, Noh S H, Kim J W et al 2011 Nature Nanotech. 6 418CrossRefGoogle Scholar
  7. 7.
    Spaldin N A 2010 Magnetic materials: fundamentals and applications (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
  8. 8.
    Rosso M 2006 J. Mater. Process. Technol. 175 364CrossRefGoogle Scholar
  9. 9.
    Singh H, Sarabjit N J and Tyagi A K 2011 J. Engg. Res. Stud. 2 72Google Scholar
  10. 10.
    Ceschini L, Dahle A, Gupta M, Jarfors A E W, Jayalakshmi S, Morri A et al 2017 Aluminum and magnesium metal matrix nanocomposites (Singapore: Springer)CrossRefGoogle Scholar
  11. 11.
    Casati R and Vedani M 2014 Metals 4 65CrossRefGoogle Scholar
  12. 12.
    Suryanarayana C 2008 Rev. Adv. Mater. Sci. 18 203Google Scholar
  13. 13.
    Bonetti E, Del Bianco L, Signoretti S and Tiberto P 2001 J. Appl. Phys. 89 1806CrossRefGoogle Scholar
  14. 14.
    Zhao L, Yang H, Li S, Yu L, Cui Y, Zhao X et al 2006 J. Magn. Magn. Mater. 301 287CrossRefGoogle Scholar
  15. 15.
    Ding J, Miao W F, Street R and McCormick P G 1996 Scripta. Mater. 35 1307CrossRefGoogle Scholar
  16. 16.
    Linderoth S R and Pedersen M S 1994 J. Appl. Phys. 75 5867CrossRefGoogle Scholar
  17. 17.
    Kosmac T and Courtney T H 1992 J. Mater. Res. 7 1519CrossRefGoogle Scholar
  18. 18.
    Pardavi H M and Takacs L 1993 J. Appl. Phys. 73 6958CrossRefGoogle Scholar
  19. 19.
    Zhang L, Ukai S, Hoshino T, Hayashi S and Qu X 2009 Act. Mat. 57 3671CrossRefGoogle Scholar
  20. 20.
    Suryanarayana C, Klassen T and Ivanov E 2011 J. Mater. Sci. 46 6301CrossRefGoogle Scholar
  21. 21.
    Jha P, Gupta P, Kumar D and Parkash O 2014 J. Compos. Mater. 48 207CrossRefGoogle Scholar
  22. 22.
    Raghavendra K G, Das Gupta A, Bhaskar P, Jayasankar K, Athreya C N, Panda P et al 2016 Powder Technol. 287 190CrossRefGoogle Scholar
  23. 23.
    Reis M A L, Rodrigues E M S, Nero J D, Simões S, Viana F, Vieira M F et al 2015 Mater. Sci. Engg. B 5 311Google Scholar
  24. 24.
    Petrovský E, Alcala M D, Criado J M, Grygar T, Kapička A and Šubrt J 2000 J. Magn. Magn. Mater. 210 257CrossRefGoogle Scholar
  25. 25.
    Gangwar A, Alla S K, Srivastava M, Meena S S, Prasadrao E V, Mandal R K et al 2016 J. Magn. Magn. Mater. 401 559CrossRefGoogle Scholar
  26. 26.
    Tiwary C S, Kashyap S, Biswas K and Chattopadhyay K 2013 J. Phys. D: Appl. Phys. 46 385001CrossRefGoogle Scholar
  27. 27.
    Marinca T F, Chicinaş H F, Neamţu B V, Chicinaş I, Isnard O, Popa F et al 2016 Adv. Powder Technol. 27 1588CrossRefGoogle Scholar
  28. 28.
    Pelegrini L, Bittencourt S D, Pauletti P, Verney J C K D, Dias M D M and Schaeffer L 2015 Mater. Res. 18 1070CrossRefGoogle Scholar
  29. 29.
    Crangle J and Goodman G M 1971 Proc. R Soc. Lond. Ser. A, Math. Phys. Sci. 321 477CrossRefGoogle Scholar
  30. 30.
    Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S et al 2004 Chem. Mater. 16 2814CrossRefGoogle Scholar
  31. 31.
    Yoon T J, Lee H, Shao H and Weissleder R 2011 Angew. Chem. Int. Ed. 50 4663CrossRefGoogle Scholar
  32. 32.
    Chiriac H, Moga A E and Gherasim C 2008 J. Optoelectron. Adv. Mat. 10 3492Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations