Electrical conductivity and pH modelling of magnesium oxide–ethylene glycol nanofluids

  • Mehdi Mehrabi
  • Mohsen SharifpurEmail author
  • Josua P Meyer


Nanofluids as new composite fluids have found their place as one of the attractive research areas. In recent years, research has increased on using nanofluids as alternative heat transfer fluids to improve the efficiency of thermal systems without increasing their size. Therefore, the examination and approval of different novel modelling techniques on nanofluid properties have made progress in this area. Stability of the nanofluids is still an important concern. Research studies on nanofluids have indicated that electrical conductivity and pH are two important properties that have key roles in the stability of the nanofluid. In the present work, three different sizes of magnesium oxide (MgO) nanoparticles of 20, 40 and 100 nm at different volume fractions up to 3% of the base fluid of ethylene glycol (EG) were studied for pH and electrical conductivity modelling. The temperature of the nanofluids was between 20 and \(70^{\circ }\hbox {C}\) for modelling. A genetic algorithm polynomial neural network hybrid system and an adaptive neuro-fuzzy inference system approach have been utilized to predict the pH and the electrical conductivity of MgO–EG nanofluids based on an experimental data set.


Nanofluids pH electrical conductivity GA-PNN ANFIS MgO ethylene glycol 


  1. 1.
    Einstein A 1906 Ann. Phys.-Berlin 4 37Google Scholar
  2. 2.
    Hatschek E 1913 Trans. Faraday Soc. 9 80CrossRefGoogle Scholar
  3. 3.
    Brinkman H C 1952 J. Chem. Phys. 20 571CrossRefGoogle Scholar
  4. 4.
    Awua J T, Ibrahim J S, Adio S A, Mehrabi M, Sharifpur M and Meyer J P 2018 Bull. Mater. Sci. 41 156CrossRefGoogle Scholar
  5. 5.
    Hong T, Yang H and Choi C J 2005 J. Appl. Phys. 97 064311CrossRefGoogle Scholar
  6. 6.
    Assael M J, Metaxa I N, Kakosimos K and Constantinou D 2006 Int. J. Thermophys. 27 999CrossRefGoogle Scholar
  7. 7.
    Hong K S, Hong T and Yang H 2006 Appl. Phys. Lett. 88 031901CrossRefGoogle Scholar
  8. 8.
    Xuan Y, Li Q and Hu W 2003 AIChE J. 49 1038CrossRefGoogle Scholar
  9. 9.
    Prasher R, Evans W, Meakin P, Fish J, Phelan P and Keblinski P 2006 Appl. Phys. Lett. 89 143119CrossRefGoogle Scholar
  10. 10.
    Putnam S A, Cahill D G, Braun P V, Ge Z and Shimmin R G 2006 J. Appl. Phys. 99 084308CrossRefGoogle Scholar
  11. 11.
    Aybar H S, Sharifpur M, Azizian M R, Mehrabi M and Meyer J P 2015 Heat Transfer Eng. 36 1085CrossRefGoogle Scholar
  12. 12.
    Sharifpur M, Solomon A B, Ottermann T L and Meyer J P 2018 Int. Commun. Heat Mass 98 297CrossRefGoogle Scholar
  13. 13.
    Nwosua Paul N, Meyer J P and Sharifpur M 2014 Comput. Fluids 101 241CrossRefGoogle Scholar
  14. 14.
    Sharifpur M, Yousefi S and Meyer J P 2016 Int. Commun. Heat Mass 78 168CrossRefGoogle Scholar
  15. 15.
    Adio S A, Sharifpur M and Meyer J P 2015 Heat Transfer Eng. 36 1241CrossRefGoogle Scholar
  16. 16.
    Adio S A, Sharifpur M and Meyer J P 2015 Bull. Mater. Sci. 38 1345Google Scholar
  17. 17.
    Samal S, Satpati B and Chaira D 2010 J. Alloys Compd. 504 389CrossRefGoogle Scholar
  18. 18.
    Sharifpur M, Ntumba T, Meyer J P and Manca O 2017 Int. Commun. Heat Mass 85 12CrossRefGoogle Scholar
  19. 19.
    Adio S A, Mehrabi M, Sharifpur M and Meyer J P 2016 Int. Commun. Heat Mass 72 71CrossRefGoogle Scholar
  20. 20.
    Ntumba T, Sharifpur M and Meyer J P 2016 Heat Transfer Eng. 37 1CrossRefGoogle Scholar
  21. 21.
    Adio S A, Sharifpur M and Meyer J P 2016 J. Exp. Nanosci. 11 630CrossRefGoogle Scholar
  22. 22.
    Sharifpur M, Adio S A and Meyer J P 2015 Int. Commun. Heat Mass 68 208CrossRefGoogle Scholar
  23. 23.
    Chari V D, Sharma D V S G K, Prasad P S R and Murthy S R 2013 Bull. Mater. Sci. 36 517CrossRefGoogle Scholar
  24. 24.
    Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O and Wongwises S 2014 J. Therm. Anal. Calorim. 118 287Google Scholar
  25. 25.
    Hemmat Esfe M, Bahiraei M and Mahian O 2018 Powder Technol. 338 383CrossRefGoogle Scholar
  26. 26.
    Amani M, Amani P, Kasaeian A, Mahian O, Pop I and Wongwises S 2017 Sci. Rep.-UK 7 17369Google Scholar
  27. 27.
    Amani M, Amani P, Mahian O and Estellé P 2017 J. Clean Prod. 166 350CrossRefGoogle Scholar
  28. 28.
    Mehrabi M, Pesteei S M and Pashaee T 2011 Int. Commun. Heat Mass 38 525CrossRefGoogle Scholar
  29. 29.
    Rezazadeh S, Mehrabi M, Pesteei S M and Mirzaee I 2012 J. Mech. Sci. Technol. 26 3701CrossRefGoogle Scholar
  30. 30.
    Mehrabi M, Rezazadeh S, Sharifpur M and Meyer J P 2012 ASME 6th International conference on energy sustainability and 10th fuel cell science, Engineering & Technology Conference (San Diego, CA)Google Scholar
  31. 31.
    Mehrabi M, Sharifpur M and Meyer J P 2012 Int. Commun. Heat Mass 39 971CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations