Advertisement

A molecular dynamics simulation of energetics and diffusion of point defects in a Au–Ag alloy

  • Ru-song LiEmail author
  • Fei Li
  • Du-qiang Xin
  • Ji-jun Luo
  • Saifei Chen
  • Yu Zhang
Article

Abstract

For revealing an aging mechanism for self-irradiation in a Pu–Ga alloy, we carried out a molecular dynamics (MD) simulation on a substitutional material, i.e., Au–Ag alloy. In this work, we estimate physical and microscopic properties of the Au–Ag alloy containing various point defects using a MD method, in particular, formation energy for point defects, migration energy for point defects diffusion into interstitial sites, and diffusion coefficient for the Au–Ag alloy containing point defects, such as vacancy, He atom and He-vacancy (He-V) cluster. The results indicate that volumetric heat capacity and linear expansion coefficient would decrease due to the various point defects, and He atom has the most remarkable influence on the physical properties of the Au–Ag alloy for point defects considered in this work. The formation energy of Au and Ag self-interstitial atom indicates that Octa1 is the most stable site, and structural stability of octahedral (Octa) interstitial sites for the He atom obeys \(\hbox {Octa1}> \hbox {Octa2}> \hbox {Octa4} > \hbox {Octa3}\). For the \(\hbox {He}_{n}\hbox {V}_{m}\) cluster, the formation energy of the defect structure is most stable at \(n = m\). The diffusion coefficient of the He-V cluster is relatively smaller, showing that vacancy defects would further decrease atomic diffusion. An influence of various point defects on the diffusion velocity in the Au–Ag alloy obeys the He-V \(\hbox {cluster}> \hbox {He}> \hbox {vacancy}> \hbox {Ag} > \hbox {Au}\).

Keywords

Radiation damage point defects formation energy migration energy molecular dynamics 

Notes

Acknowledgements

This work is supported by the National Science Foundation of China under contract nos. 51401237, 11474358 and 51271198; the Scientific Research Program Funded by Shaanxi Provincial Education Department (program no. 18JK1207); and the Defence Technology Foundation of China under contract no. 2301003.

References

  1. 1.
    Baskes M L 2000 Phys. Rev. B 62 15532CrossRefGoogle Scholar
  2. 2.
    Pochet P 2003 Nucl. Instrum. Meth. B 202 82CrossRefGoogle Scholar
  3. 3.
    Ao B Y, Wang X L, Hu W Y, Yang J Y and Xia J X 2007 J. Alloys Compd. 444–445 300CrossRefGoogle Scholar
  4. 4.
    Ao B Y, Chen P H, Shi P and Wang X L 2012 Commun. Comput. Phys. 11 1205CrossRefGoogle Scholar
  5. 5.
    Robinson M, Kenny S D, Smith R and Storr M T 2012 J. Nucl. Mater. 423 16CrossRefGoogle Scholar
  6. 6.
    Scott C, Kenny S D, Storr M T and Willetts A 2013 J. Nucl. Mater. 442 83CrossRefGoogle Scholar
  7. 7.
    Robinson M, Kenny S D, Smith R and Storr M T 2014 J. Nucl. Mater. 444 493CrossRefGoogle Scholar
  8. 8.
    Wu F C, Wang P, Liu X Y and Wu H A 2017 J. Nucl. Mater. 484 7CrossRefGoogle Scholar
  9. 9.
    Karavaev A V, Dremov V V and Ionov G V 2017  J. Nucl. Mater. 496 85CrossRefGoogle Scholar
  10. 10.
    Valone S M, Baskes M L, Stan M, Mitchell T E, Lawson A C and Sickafus K E 2004 J. Nucl. Mater. 324 41CrossRefGoogle Scholar
  11. 11.
    Savrasov S Y, Kotliar G and Abrahams E 2001 Nature (London) 410 793CrossRefGoogle Scholar
  12. 12.
    Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H and Abrahams E 2003 Science 300 953CrossRefGoogle Scholar
  13. 13.
    Moore K T, Söderlind P, Schwartz A J and Laughlin D E 2006 Phys. Rev. Lett. 96 206402CrossRefGoogle Scholar
  14. 14.
    Petit L, Svane A, Szotek Z and Temmerman W M 2003 Science 301 498CrossRefGoogle Scholar
  15. 15.
    Stevens M F, Zocco T, Albers R, Becker J D, Walter K, Cort B et al 1998 Fundamental and applied studies of helium ingrowth and aging in plutonium (United States: Los Alamos National Laboratory)  https://doi.org/10.2172/296814
  16. 16.
    Thomé T and Grynszpan R I 2006 Radiat. Eff. Defect. S. 161 347CrossRefGoogle Scholar
  17. 17.
    Zhu Z Q 2013 MS thesis (Chengdu: University of Electronic Technology) (in Chinese)Google Scholar
  18. 18.
    Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G et al 2009 Phys. Rev. B 80 054104CrossRefGoogle Scholar
  19. 19.
    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A et al 2006 Acta Mater. 49 4005CrossRefGoogle Scholar
  20. 20.
    Zhou X W, Wadley H N G, Filho J S and Neurock M N 2004 Phys. Rev. B 69 035402CrossRefGoogle Scholar
  21. 21.
    Valone S M, Baskes M I and Martin R L 2006 Phys. Rev. B 73 214209CrossRefGoogle Scholar
  22. 22.
    Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963CrossRefGoogle Scholar
  23. 23.
    Schwarz K, Blaha P and Madsen G K H 2002 Commun. Comput. Phys. 147 71CrossRefGoogle Scholar
  24. 24.
    Schwarz K 2003 J. Solid State Chem. 176 319CrossRefGoogle Scholar
  25. 25.
    Schwarz K, Blaha P and Trickey S B 2010 Mol. Phys. 108 3147CrossRefGoogle Scholar
  26. 26.
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 38065CrossRefGoogle Scholar
  27. 27.
    Zhang J M, Song X L, Zhang X J and Xu K W 2006 J. Phys. Chem. Solids  67 714CrossRefGoogle Scholar
  28. 28.
    Zhang B W, Hu W Y and Shu X L 2005 Theory of embedded atom method and its application to material science (Changsha: Hu’nan University Press) p 84Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Xijing UniversityXi’anPeople’s Republic of China

Personalised recommendations