Advertisement

Effect of strain on \(\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}/\hbox {GaAs}\) to extract the electronic band structure and optical gain by using 16-band \(\varvec{kp}\) Hamiltonian

  • Arvind Sharma
  • T D DasEmail author
Article
  • 42 Downloads

Abstract

\(\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}\) is a suitable candidate for \(1.06\,{\upmu }\hbox {m}\) solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy \(\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}\) with \(x/y=0.58\) can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of \(\sim \)200 meV for \(\hbox {GaAs}_{0.937}\hbox {N}_{0.023}\hbox {Bi}_{0.04}\) alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of \(\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}\) quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW.

Keywords

\(\mathrm{GaAs}_{1-x-y}\mathrm{N}_{x}\mathrm{Bi}_{y}\) \({ kp}\) method strain optical gain 

References

  1. 1.
    Usman M, Broderick C A and O’Reilly E P 2013 AIP Conf. Proc. 1566 21CrossRefGoogle Scholar
  2. 2.
    Xiaoyang M et al 2014 Nanoscale Res. Lett. 9 580CrossRefGoogle Scholar
  3. 3.
    Wei P et al 2004 Nucl. Instrum. Methods Phys. Res. B 219 671CrossRefGoogle Scholar
  4. 4.
    Kini R N, Ptak A J, Fluegel B, France R, Reedy R C and Mascarenhas A 2011 Phys. Rev. B 83 075307CrossRefGoogle Scholar
  5. 5.
    Broderick C A et al 2013 Semicond. Sci. Technol. 28 125025CrossRefGoogle Scholar
  6. 6.
    Sweeney S J and Jin S R 2013 J. Appl. Phys. 113 043110CrossRefGoogle Scholar
  7. 7.
    Yoshimoto M et al 2004 Jpn. J. Appl. Phys. 43 L845CrossRefGoogle Scholar
  8. 8.
    Wei H et al 2005 J. Appl. Phys. 98 053505CrossRefGoogle Scholar
  9. 9.
    Lin K I, Lin K L, Wang B W, Lin H and Hwang J S 2013 Appl. Phys. Express 6 121202CrossRefGoogle Scholar
  10. 10.
    Samajdar D P et al 2016 Curr. Appl. Phys. 16 1687CrossRefGoogle Scholar
  11. 11.
    Aissat A et al 2015 Mater. Sci. Semicond. Process. 31 568CrossRefGoogle Scholar
  12. 12.
    Fluegel B et al 2006 Phys. Rev.Lett. 97 067205CrossRefGoogle Scholar
  13. 13.
    Alberi K et al 2007 Phys. Rev. B 75 045203CrossRefGoogle Scholar
  14. 14.
    Habchi M, Nasr A B, Rebey A and Jani B E 2013 Infrared Phys. Technol. 61 88CrossRefGoogle Scholar
  15. 15.
    Ng S T, Fan W J, Dang Y X and Yoon S F 2005 Phys. Rev. B 72 115341CrossRefGoogle Scholar
  16. 16.
    Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815CrossRefGoogle Scholar
  17. 17.
    Voon L Y and Willatzen M 2009 The kp method: electronic properties of semiconductors (Berlin Heidelberg: Springer-Verlag)Google Scholar
  18. 18.
    Mal I et al 2017 Superlattices Microstruct. 106 20CrossRefGoogle Scholar
  19. 19.
    Mal I et al 2017 Superlattices Microstruct. 109 442CrossRefGoogle Scholar
  20. 20.
    Alberi K, Dubon O D et al 2007 Appl. Phys. Lett. 91 051909CrossRefGoogle Scholar
  21. 21.
    Rajpalke M K, Linhart W M, Birkett M, Yu K M, Scanlon D O, Buckeridge J et al 2013 Appl. Phys. Lett. 103 142106CrossRefGoogle Scholar
  22. 22.
    Gladysiewicz M, Kudrawiec R and Wartak M S J 2015 Appl. Phys. 118 055702CrossRefGoogle Scholar
  23. 23.
    Pidgeon C R and Brown R N 1966 Phys. Rev. 146 575CrossRefGoogle Scholar
  24. 24.
    Bir G L and Pikus G E 1976 Symmetry and strain-induced effects in semiconductors (New York: Wiley)Google Scholar
  25. 25.
    Bousbih F, Bouzid S B, Chtourou R, Charfi F F, Harmand J C and Ungaro G 2002 Mater. Sci. Eng., C 21 251CrossRefGoogle Scholar
  26. 26.
    Chuang S L 1995 Physics of optoelectronic devices (pure and applied optics) (New York: Wiley)Google Scholar
  27. 27.
    Chow W W and Koch S W 1999 Semiconductor-laser fundamentals: physics of the gain materials (New York: Springer)CrossRefGoogle Scholar
  28. 28.
    Ahmed A B, Saidi H, Ridene S and Bouchriha H 2015 IEEE J. Quantum Electron. 51 1CrossRefGoogle Scholar
  29. 29.
    Debbichi M et al 2009 Semicond. Sci. Technol. 24 085010CrossRefGoogle Scholar
  30. 30.
    Lysak V V, Kawaguchi H and Sukhoivanov I A 2005 IEEE Proc. Optoelectron. 152 131CrossRefGoogle Scholar
  31. 31.
    Asada M, Kameyama A and Suematsu Y 1984 IEEE J. Quantum Electron. 20 745CrossRefGoogle Scholar
  32. 32.
    Habchi M M, Nasr A B, Rebey A and EI Jani B 2013 Infrared Phys. Technol. 61 88Google Scholar
  33. 33.
    Pan J L and Fonstad C G 2000 IEEE Trans. Electron. Dev. 47 1325CrossRefGoogle Scholar
  34. 34.
    Yoshimoto M et al 2006 Phys. Status Solidi 243 1421CrossRefGoogle Scholar
  35. 35.
    Nacer S et al 2008 Opt. Quantum Electron. 40 677CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Basic & Applied ScienceNational Institute of TechnologyPapum PareIndia

Personalised recommendations