Understanding the role of glucose oxidase on carbon felt as electrodes in biocapacitor studies

  • Rajendran Rajaram
  • Dharmaraj Karuppasamy
  • P RagupathyEmail author
  • Jayaraman Mathiyarasu


In this work, we have reported glucose oxidase incorporated carbon felt bioelectrodes (GOx/CFE) as biocapacitors for energy storage. Glucose oxidase (GOx) was incorporated into a carbon felt electrode (CFE) and the electrode was characterized using X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. As a result, it was found that GOx was successfully incorporated into a bare CFE and enhances the specific capacitance of the electrode and it was stable up to 500 charge–discharge cycles. Consequently, it was observed that GOx/CFE exhibits enhanced energy storage capacitance compared to that of pristine carbon felt. The capacitance of GOx/CFE is found to be \(4.21\hbox { mF cm}^{-2}\,(23\hbox { F g}^{-1})\) while the bare CFE shows \(3.68\hbox { mF cm}^{-2}\) in a phosphate buffer solution (\(\hbox {pH}=7.0\)). Albeit the capacitance values are small compared to conventional supercapacitors, the utility of these biocapacitors is expected to have a significant impact on glucose monitoring. Columbic efficiency obtained with the GOx/CFE matrix is 89%, and the electrode is stable up to 225 cycles with 100% retention of capacitance. After 225 cycles, the electrode loses the capacitance up to 12% retaining the capacitance of 88% up to 500 cycles. Cyclic voltammetric studies revealed that GOx/CFE is capable of energy storage with a \(200\,\upmu \hbox {A}\) higher capacitive loop than the bare CFE at a scan rate of \(10\hbox { mV s}^{-1}\). Electrochemical impedance analysis measurements also confirmed that GOx/CFE possess minimum resistivity. Moreover, it is very eco-friendly due to which unwanted pollution can be avoided. From the proposed matrix, it is believed that a green, eco-friendly, clean, renewable material for energy storage could be realized.


Glucose oxidase (GOx) carbon felt specific capacitance biocapacitor cycle-life 



The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi for the financial support from the projects, CSC-0134 and MLP-0102. We extend our gratitude to our Director, Dr Vijayamohanan K Pillai for his encouragement.


  1. 1.
    Gupta V, Gupta S and Miura N 2008 J. Power Sources 175 680CrossRefGoogle Scholar
  2. 2.
    Gamby J, Taberna P L, Simon P, Fauvarque J F and Chesneau M 2001 J. Power Sources 101 109CrossRefGoogle Scholar
  3. 3.
    Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H and Oya A 2003 Carbon 41 1765CrossRefGoogle Scholar
  4. 4.
    Roldan S, Blanco C, Granda M, Menendez R and Santamaría R 2011 Angew. Chem. Int. Ed. 50 1699CrossRefGoogle Scholar
  5. 5.
    Cottineau T, Toupin M, Delahaye T, Brousse T and Belanger D 2006 Appl. Phys. A: Mater. Sci. Process. 82 599CrossRefGoogle Scholar
  6. 6.
    Jeong Y U and Manthiram A 2002 J. Electrochem. Soc. 149 A1419CrossRefGoogle Scholar
  7. 7.
    Meng C, Liu C, Chen L, Hu C and Fan S 2010 Nano Lett. 10 4025CrossRefGoogle Scholar
  8. 8.
    Aravindan V, Chuiling W, Reddy M V, Rao G V S, Chowdari B V R and Madhavi S 2012 Phys. Chem. Chem. Phys. 14 5808CrossRefGoogle Scholar
  9. 9.
    Perumal V and Hashim U 2014 J. Appl. Biomed. 12 1CrossRefGoogle Scholar
  10. 10.
    Falk M, Alcalde M, Bartlett P N, De Lacey A L, Gorton L, Sanchez C G et al 2014 PLoS ONE 9 1Google Scholar
  11. 11.
    MacVittie K, Conlon T and Katz E 2015 Bioelectrochemistry 106 28Google Scholar
  12. 12.
    Southcott M, MacVittie K, Halamek J, Halamkova L, Jemison W D, Lobel R et al 2013 Phys. Chem. Chem. Phys. 15 6278CrossRefGoogle Scholar
  13. 13.
    Reuilllard B, Le Goff A, Agnes C, Holzinger M, Zebda A, Gondran C et al 2013 Phys. Chem. Chem. Phys. 15 4892CrossRefGoogle Scholar
  14. 14.
    Szczupak A, Halamek J, Halámkova L, Bocharova V, Alfonta L and Katz E 2012 Energy Environ. Sci. 5 8891CrossRefGoogle Scholar
  15. 15.
    Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Goff A L, Gondran C et al 2013 Sci. Rep. 3 1CrossRefGoogle Scholar
  16. 16.
    Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K and Sode K 2011 J. Diabetes Sci. Technol. 5 1030CrossRefGoogle Scholar
  17. 17.
    Heli H, Sattarahmady N, Jabbari A, Moosavi-Movahedi A A, Hakimelahi G H and Tsai F Y 2007 J. Electroanal. Chem. 610 67CrossRefGoogle Scholar
  18. 18.
    Heli H, Moosavi-Movahedi A A, Jabbari A and Ahmad F 2007 J. Solid State Electrochem. 11 593CrossRefGoogle Scholar
  19. 19.
    Ravenna Y, Xia L, Gun J, Mikhaylov A A, Medvedev A G, Lev O et al 2015 Anal. Chem. 87 9567CrossRefGoogle Scholar
  20. 20.
    Agnes C, Holzinger M, Le Goff A, Reuillard B, Elouarzaki K, Tingry S et al 2014 Energy Environ. Sci. 7 1884CrossRefGoogle Scholar
  21. 21.
    Frew J E and Hill H A O 1988 Eur. J. Biochem. 172 261CrossRefGoogle Scholar
  22. 22.
    Sode K, Yamazaki T, Lee I, Hanashi T and Tsugawa W 2016 Biosens. Bioelectron. 76 20CrossRefGoogle Scholar
  23. 23.
    Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K and Sode K 2012 Electrochemistry 80 367CrossRefGoogle Scholar
  24. 24.
    Hanashi T, Yamazaki T, Tanaka H, Ikebukuro K, Tsugawa W and Sode K 2014 Sens. Actuators B: Chem. 196 429CrossRefGoogle Scholar
  25. 25.
    Rao S, Lu S, Guo Z, Li Y, Chen D and Xiang Y 2014 Adv. Mater. 26 5846CrossRefGoogle Scholar
  26. 26.
    Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, Tomiyama M et al 2009 Biosens. Bioelectron. 24 1837CrossRefGoogle Scholar
  27. 27.
    Sattarahmady N, Dehdari Vais R and Heli H 2015 J. Appl. Electrochem. 45 577CrossRefGoogle Scholar
  28. 28.
    Beker P, Koren I, Amdursky N, Gazit E and Rosenman G 2010 J. Mater. Sci. 45 6374CrossRefGoogle Scholar
  29. 29.
    Bankar S B, Bule M V, Singhal R S and Ananthanarayan L 2009 Biotech. Adv. 27 489CrossRefGoogle Scholar
  30. 30.
    Lv Z, Xie D, Li F, Hu Y, Wei C and Feng C 2014 J. Power Sources 246 642CrossRefGoogle Scholar
  31. 31.
    Kim K J, Park M S, Kim J H, Hwang U, Lee N J, Jeong G et al 2012 Chem. Commun. 48 5455CrossRefGoogle Scholar
  32. 32.
    Wang C, Zhou C, Long Y, Cai H, Yin C, Yang Q et al 2016 Sci. Rep. 6 24490Google Scholar
  33. 33.
    Degani Y and Heller A 1988 J. Am. Chem. Soc. 110 2615CrossRefGoogle Scholar
  34. 34.
    Schuhmann W, Ohara T J, Schmidt H L and Heller A 1991 J. Am. Chem. Soc. 113 1394CrossRefGoogle Scholar
  35. 35.
    Kim E, Liu Y, Bentley W E and Payne G F 2012 Adv. Funct. Mater. 22 1409CrossRefGoogle Scholar
  36. 36.
    Gopel W, Hesse J and Zemel J N 2008 Sensors: A Compr. Surv. 3 744Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Rajendran Rajaram
    • 1
    • 2
  • Dharmaraj Karuppasamy
    • 2
  • P Ragupathy
    • 1
    • 3
    Email author
  • Jayaraman Mathiyarasu
    • 1
    • 2
  1. 1.Academy of Scientific and Innovative Research (AcSIR)CSIR – Central Electrochemical Research Institute (CECRI) CampusChennaiIndia
  2. 2.Electrodics and Electrocatalysis DivisionCSIR-CECRIKaraikudiIndia
  3. 3.Fuel Cells Section, Electrochemical Power Sources DivisionCSIR-CECRIKaraikudiIndia

Personalised recommendations