Negative thermal expansion and cationic migration in zeolite Y used in FCC catalysts

  • A Dosen
  • B A MarinkovicEmail author


The influence of extra-framework cations on the intrinsic negative thermal expansion (NTE) of calcined ultrastable and lanthanum-exchanged zeolites Y was analysed. High-temperature thermal behaviour, cationic migration and dealumination were examined by in situ high temperature X-ray powder diffraction and thermogravimetric (TG) analyses. We analysed protonated ultrastable zeolite Y and zeolite Y containing 13% \(\hbox {La}_{2}\hbox {O}_{3}\) (LaY), and investigated how the presence of \(\hbox {La}^{3+}\) influences thermal behaviour of zeolite Y. Uncalcined LaY was also analysed to observe the \(\hbox {La}^{3+}\) migration before calcination. Mass loss up to \(990{^{\circ }}\hbox {C}\) was accompanied by TG analyses. X-ray powder diffraction data were analysed by Rietveld method. Our data show that lanthanum migration from supercages to sodalitic cavities is not reversible. However, some \(\hbox {La}^{3+}\) migration occurs above \(400{^{\circ }}\hbox {C}\) and we observe emptying of site \(\hbox {I}{'}\), migration to site I and to some extent to site \(\hbox {II}{'}\). Furthermore, we examined the dealumination process as well. Both samples show two distinct thermal behaviours, positive or near-zero thermal expansion up to \(500{^{\circ }}\hbox {C}\) and NTE above this temperature. Together with intrinsic NTE in faujasite type zeolites, the dealumination process is largely responsible for NTE at high temperatures.


Near-zero thermal expansion in situ XRD ultrastable zeolite Y extra-framework cation lanthanum migration 



BAM is grateful to CNPq (306517/2015-9) (National Council for Scientific and Technological Development) for a research productivity grant.

Supplementary material

12034_2019_1778_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (docx 91 KB)


  1. 1.
    Vogt E T C and Weckhuysen B M 2015 Chem. Soc. Rev. 44 7342CrossRefGoogle Scholar
  2. 2.
    Kerr G T 1973 Hydrogen zeolite Y, ultrastable zeolite Y, and aluminum-deficient zeolites: molecular sieves (Washington, D.C.: American Chemical Society) p 219Google Scholar
  3. 3.
    Cruciani G 2006 J. Phys. Chem. Solids 67 1973CrossRefGoogle Scholar
  4. 4.
    Trigueiro F E, Monteiro D F J, Zotin F M Z and Falabella Sousa-Aguiar E 2002 J. Alloys Compd. 344 337CrossRefGoogle Scholar
  5. 5.
    Frising T and Leflaive P 2008 Microporous Mesoporous Mater. 114 27CrossRefGoogle Scholar
  6. 6.
    Nery J G, Giotto M V, Mascarenhas Y P, Cardoso D, Zotin F M Z and Sousa-Aguiar E F 2000 Microporous Mesoporous Mater. 41 281CrossRefGoogle Scholar
  7. 7.
    Sousa-Aguiar E F, Trigueiro F E and Zotin F M Z 2013 Catal. Today 218–219 115CrossRefGoogle Scholar
  8. 8.
    Lee E F T and Rees L V C 1987 Zeolites 7 143CrossRefGoogle Scholar
  9. 9.
    Du X, Zhang H, Li X, Tan Z, Liu H and Gao X 2013 Chin. J. Catal. 34 1599CrossRefGoogle Scholar
  10. 10.
    Lee E F T and Rees L V C 1987 Zeolites 7 545CrossRefGoogle Scholar
  11. 11.
    Klein H, Fuess H and Hunger M 1995 J. Chem. Soc., Faraday Trans. 91 1813Google Scholar
  12. 12.
    Gruenert W, Sauerlandt U, Schloegl R and Karge H G 1993 J. Phys. Chem. 97 1413CrossRefGoogle Scholar
  13. 13.
    Xu P, Lu J, Aydin C, Debefve L M, Browning N D, Chen C-Y et al 2015 Microporous Mesoporous Mater. 213 95CrossRefGoogle Scholar
  14. 14.
    Wang N N, Wang Y, Cheng H F, Fu M E, Tao Z and Wu W Z 2013 J. Porous. Mater. 20 1371CrossRefGoogle Scholar
  15. 15.
    Marti J, Soria J and Cano F H 1977 J. Colloid Interface Sci. 60 82CrossRefGoogle Scholar
  16. 16.
    Haniffa R M and Seff K 1998 Microporous Mesoporous Mater. 25 137CrossRefGoogle Scholar
  17. 17.
    Nery J G, Mascarenhas Y P, Bonagamba T J, Mello N C and Souza-Aguiar E F 1997 Zeolites 18 44CrossRefGoogle Scholar
  18. 18.
    Smith J V, Bennett J M and Flanigen E M 1967 Nature 215 241CrossRefGoogle Scholar
  19. 19.
    Marinkovic B A, Jardim P M, Saavedra A, Lau L Y, Baehtz C, de Avillez R R et al 2004 Microporous Mesoporous Mater. 71 117CrossRefGoogle Scholar
  20. 20.
    Leardini L, Quartieri S, Vezzalini G and Arletti R 2015 Microporous Mesoporous Mater. 202 226CrossRefGoogle Scholar
  21. 21.
    Marinkovic B A, Jardim P M, Rizzo F, Saavedra A, Lau L Y and Suard E 2008 Microporous Mesoporous Mater. 111 110CrossRefGoogle Scholar
  22. 22.
    Buragadda V R, Yu L, Alabarse F G, Haidoux A, Levelut C, van der Lee A et al 2013 RSC Adv. 3 9911CrossRefGoogle Scholar
  23. 23.
    Krokidas P G, Skouras E D, Nikolakis V and Burganos V N 2010 J. Phys. Chem. C 114 22441CrossRefGoogle Scholar
  24. 24.
    Radosavljevic-Mihajlovic A S, Kremenovic A S, Dosen A M, Andrejic J Z and Dondur V T 2015 Microporous Mesoporous Mater. 201 210CrossRefGoogle Scholar
  25. 25.
    Attfield M P 1998 Chem. Commun. 5 601CrossRefGoogle Scholar
  26. 26.
    Couves J W, Jones R H, Parker S C, Tschaufeser P and Catlow C R A 1993 J. Phys.: Condens. Matter 5 L329Google Scholar
  27. 27.
    Gualtieri A F, Ferrari S, Galli E, Di Renzo F and van Beek W 2006 Chem. Mater. 18 76CrossRefGoogle Scholar
  28. 28.
    Du X, Gao X, Zhang H, Li X and Liu P 2013 Catal. Commun. 35 17CrossRefGoogle Scholar
  29. 29.
    Young R A 1993 The Rietveld method ([Chester, England]; Oxford; New York: International Union of Crystallography; Oxford University Press)Google Scholar
  30. 30.
    Gillie L J, Wright A J, Hadermann J, Van Tendeloo G and Greaves C 2003 J. Solid State Chem. 175 188CrossRefGoogle Scholar
  31. 31.
    Bordet P, Capponi J J, Chaillout C, Chenavas J, Hewat A W, Hewat E A et al 1988 Phys. C: Supercond. 153–155 623CrossRefGoogle Scholar
  32. 32.
    Wang X, Hanson J C, Szanyi J and Rodriguez J A 2004 J. Phys. Chem. B 108 16613CrossRefGoogle Scholar
  33. 33.
    Bhange D S and Ramaswamy V 2012 J. Porous Mater. 19 301CrossRefGoogle Scholar
  34. 34.
    Kirschhock C E A, Hunger B, Martens J and Jacobs P A 2000 J. Phys. Chem. B 104 439CrossRefGoogle Scholar
  35. 35.
    Sohn J R, De Canio S J, Lunsford J H and O’Donnell D J 1986 Zeolites 6 225CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringPontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations