Advertisement

A hollow \({\hbox {Fe}}_{3} {\hbox {O}}_{4}\)-based nanocomposite anode for lithium-ion batteries with outstanding cycling performance

  • Shanshan XiaoEmail author
  • Fei Bi
  • Li Zhao
  • Liyan Wang
  • Guangqing Gai
Article
  • 29 Downloads

Abstract

The fabrication of hybrid electrodes with conversion-type electrode materials has drawn growing interest in improving the capacity performance of lithium-ion batteries (LIBs) for many high-energy applications. However, as a typical conversion-type electrode material, \({\hbox {Fe}}_{3}{\hbox {O}}_{4}\) is usually restricted by large amount of volume change during repeated lithiation/delithiation course, which dramatically hinders the cycling stability of the constructed LIBs. We design a hybrid electrode of \({\hbox {Fe}}_{3}{\hbox {O}}_{4}\) nanospheres with a hollow structure wrapped by \({\hbox {MnO}}_{2}\) nanosheets (H-Fe\(_{3}{\hbox {O}}_{4}/{\hbox {MnO}}_{2} \, \hbox {NSs}\) nanospheres). As a result of the synergetic effect of a high-capacity material coating and a robust hollow core, the H-Fe\(_{3}{\hbox {O}}_{4}/{\hbox {MnO}}_{2} \, \hbox {NS}\) hybrid electrode delivers reversible capacity as high as \(590 \, {\hbox {mAh g}}^{-1}\) at a current rate of 0.1 C and maintains 92% of the initial reversible capacity after 1000 cycles at 1 C.

Keywords

Hollow \({\hbox {Fe}}_{3}{\hbox {O}}_{4}\) \({\hbox {MnO}}_{2}\) core–shell hybrid electrode lithium-ion battery 

Notes

Acknowledgements

This work was supported by the Scientific Development Programs of Jilin Province (grant nos. 20180520217JH and 20170520152JH) and the National Natural Science Foundation of China (no. 51403075).

References

  1. 1.
    Arico A S, Bruce P, Scrosati B, Tarascon J M and Schalkwijk W V 2005 Nat. Mater. 4 366CrossRefGoogle Scholar
  2. 2.
    Tarascon J M and Armand M 2001 Nature 414 359CrossRefGoogle Scholar
  3. 3.
    Goodenough J B and Kim Y 2010 Chem. Mater. 22 587CrossRefGoogle Scholar
  4. 4.
    Whittingham M S 2004 Chem. Rev. 104 4271CrossRefGoogle Scholar
  5. 5.
    Kang B and Ceder G 2009 Nature 458 190CrossRefGoogle Scholar
  6. 6.
    Flandroisa S and Simon B 1999 Carbon 37 165CrossRefGoogle Scholar
  7. 7.
    Lee S W, Gallant B M, Byon H R, Hammond P T and Horn Y S 2011 Energy Environ. Sci. 4 1972CrossRefGoogle Scholar
  8. 8.
    Mai Y J, Shi S J, Zhang D, Lu Y, Gu C D and Tu J P 2012 J. Power Sources 204 155CrossRefGoogle Scholar
  9. 9.
    Zhou W W, Cheng C W, Liu J P, Tay Y Y, Jiang J, Jia X T et al 2011 Adv. Funct. Mater. 21 2439CrossRefGoogle Scholar
  10. 10.
    Park M S, Wang G X, Kang Y M, Wexler D, Dou S X and Liu H K 2007 Angew. Chem. Int. Ed. 46 750CrossRefGoogle Scholar
  11. 11.
    Chen Y, Song B H, Tang X S, Lu L and Xue J M 2014 Small 10 1536CrossRefGoogle Scholar
  12. 12.
    Li L, Raji A R O and Tour J M 2013 Adv. Mater. 25 6298CrossRefGoogle Scholar
  13. 13.
    Jiang Y, Leng X J, Jia Z L and Chen H X 2015 J. Mater. Sci.: Mater. Electron. 26 2995Google Scholar
  14. 14.
    Taberna P L, Mitra S, Poizot P and Tarascon J M 2006 Nat. Mater. 5 567CrossRefGoogle Scholar
  15. 15.
    Cheng K, Yang F, Ye K, Zhang Y, Jiang X, Yin J L et al 2014 J. Power Sources 258 260CrossRefGoogle Scholar
  16. 16.
    Coey J M D, Berkowitz A E, Balcells L I, Putris F F and Parker F T 1998 Appl. Phys. Lett. 72 734CrossRefGoogle Scholar
  17. 17.
    Xiong Q Q, Tu J P, Lu Y, Chen J, Yu Y X, Qiao Y Q et al 2012 J. Phys. Chem. C 116 6495CrossRefGoogle Scholar
  18. 18.
    Yang Z C, Shen J G and Archer L A 2011 J. Mater. Chem. 21 11092CrossRefGoogle Scholar
  19. 19.
    He C N, Wu S, Zhao N Q, Shi C S, Liu E Z and Li J J 2013 ACS Nano 7 4459CrossRefGoogle Scholar
  20. 20.
    Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A et al 2008 Nat. Nanotechnol. 3 31CrossRefGoogle Scholar
  21. 21.
    Wang Z Y, Zhou L and Lou X W 2012 Adv. Mater. 24 1903CrossRefGoogle Scholar
  22. 22.
    Han C P, Ma Q L, Yang Y, Yang M, Yu W S, Dong X T et al 2015 J. Mater. Sci.: Mater. Electron. 26 8054Google Scholar
  23. 23.
    Chen Y W, Yuan T, Wang F, Hu J Q and Tu W P 2016 J. Mater. Sci.: Mater. Electron. 27 9983Google Scholar
  24. 24.
    Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406CrossRefGoogle Scholar
  25. 25.
    Ghodbane O, Ataherianc F, Wu N L and Favier F 2012 J. Power Sources 206 454CrossRefGoogle Scholar
  26. 26.
    Zhang Z Q, Ma C C, Huang M, Li F, Zhu S J, Hua C et al 2015 J. Mater. Sci.: Mater. Electron. 26 4212Google Scholar
  27. 27.
    Shebanova O N and Lazor P 2003 J. Solid State Chem. 174 424CrossRefGoogle Scholar
  28. 28.
    Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S and Pereira-Ramos J P 2003 Solid State Ion. 159 345CrossRefGoogle Scholar
  29. 29.
    Yoon T, Chae C, Sun Y K, Zhao X, Kung H H and Lee J K 2011 J. Mater. Chem. 21 17325CrossRefGoogle Scholar
  30. 30.
    Zhang L, Lian J, Wu L, Duan Z, Jiang J and Zhao L 2014 Langmuir 30 7006CrossRefGoogle Scholar
  31. 31.
    Morel A L, Nikitenko S I, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C et al 2008 ACS Nano 2 847CrossRefGoogle Scholar
  32. 32.
    Qin M G, Zhao H L, Yang W J, Zhou Y R and Li F 2016 RSC Adv. 6 23905CrossRefGoogle Scholar
  33. 33.
    Wen Z, Zhang Y, Wang Y, Li L and Chen R 2017 Chem. Eng. J. 312 39CrossRefGoogle Scholar
  34. 34.
    Sathiya M, Prakash A S, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291CrossRefGoogle Scholar
  35. 35.
    Wang Y, Han Z J, Yu S F, Song R R, Song H H, Ostrikov K et al 2013 Carbon 64 230CrossRefGoogle Scholar
  36. 36.
    Jamnikab J and Maier J 2003 Phys. Chem. Chem. Phys. 5 5215CrossRefGoogle Scholar
  37. 37.
    Chen J, Xu L N, Li W Y and Gou X L 2005 Adv. Mater. 17 582CrossRefGoogle Scholar
  38. 38.
    Balaya P, Li H, Kienle L and Maier J 2003 Adv. Funct. Mater. 13 621CrossRefGoogle Scholar
  39. 39.
    Peng C X, Chen B D, Qin Y, Yang S H, Li C Z, Zuo Y H et al 2012 ACS Nano 6 1074CrossRefGoogle Scholar
  40. 40.
    Zhou G M, Wang D W, Yin L C, Li N, Li F and Cheng H M 2012 ACS Nano 6 3214CrossRefGoogle Scholar
  41. 41.
    Wang Z Y, Luan D Y, Madhavi S, Hu Y and Lou X W 2012 Energy Environ. Sci. 5 5252CrossRefGoogle Scholar
  42. 42.
    Liu Z, Yu X Y and Paik U 2016 Adv. Energy Mater. 6 1502318CrossRefGoogle Scholar
  43. 43.
    Wei W, Yang, Zhou H, Lieberwirth I, Feng X and Müllen K 2013 Adv. Mater. 25 2909CrossRefGoogle Scholar
  44. 44.
    Chen T, Hu Y, Cheng B, Chen R, Lv H, Ma L et al 2016 Nano Energy 20 305CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Shanshan Xiao
    • 1
    Email author
  • Fei Bi
    • 1
  • Li Zhao
    • 1
  • Liyan Wang
    • 1
  • Guangqing Gai
    • 1
  1. 1.Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and EngineeringJilin Jianzhu UniversityChangchunPeople’s Republic of China

Personalised recommendations