Effect of carrier gas pressure on structural, optical and photovoltaic properties of tin sulphide thin films prepared by nebulizer spray pyrolysis method

  • A M S ArulananthamEmail author
  • S Valanarasu
  • K Jeyadheepan
  • A Kathalingam


Tin sulphide (SnS) thin films deposited using nebulizer spray pyrolysis technique by changing pressure (0.1, 0.15, 0.2 and 0.25 Pascal) at \(350^{\circ }\hbox {C}\) and their characterization are reported. The influence of carrier gas pressure on structural, morphological, optical and electrical properties of the film are determined using X-ray diffraction (XRD), energy-dispersive X-ray, atomic force microscopy, UV–Vis spectrophotometry and Hall effect measurement. Structural parameters such as pole density, orientation factor, crystallite size, micro strain and dislocation density were analysed using XRD data. The scanning electron microscopy studies display superior morphology and surface roughness of the films which were found to increase with pressure. Optical studies on the films revealed a variation in band gap from 1.78 to 1.66 eV for were the raise of pressure from 0.1 to 0.2 Pa. A single strong emission peak at about 825 nm is observed in photoluminescence spectra with enhanced intensity which may be attributed to near band edge emission. Grown SnS thin film exhibits p-type conductivity, which was confirmed from the Hall effect measurement. The low resistivity and higher carrier concentration are found to be \(0.235\,\Omega \,\hbox {cm}\) and \(5.04\times 10^{18}\,\hbox {cm}^{-3}\), respectively. These properties were then correlated with the deposition parameters. Furthermore, to study the photovoltaic properties of SnS thin films, a heterojunction solar cell FTO/n-CdS/p-SnS/Al was fabricated showing conversion efficiency of 0.16%.


Nebulizer spray carrier gas pressure SEM/AFM Hall measurements solar cell efficiency 



We wish to express our sincere thanks to the Department of Science and Technology, New Delhi, India, for financial assistance for the work by the project number SB/FTP/PS-131/2013.


  1. 1.
    Sall T, Soucase B M, Mollar M and Sans J A 2016 J. Electron. Mater. 46 1714CrossRefGoogle Scholar
  2. 2.
    Ogah O E, Zoppi G, Forbes I and Miles R W 2009 Thin Solid Films 517 2485CrossRefGoogle Scholar
  3. 3.
    Mani P, Manikandan K and Joseph Prince J 2016 J. Mater. Sci.: Mater. Electron. 27 9255Google Scholar
  4. 4.
    Gomez A, Martinez H, Calixto-Rodriguez M, Avellaneda D, Reyes P G and Flores O 2013 J. Mater. Sci. Eng. B 3 352Google Scholar
  5. 5.
    Santhosh Kumar K, Gowri Manohari A, Dhana Pandian S and Mahalingam T 2014 Mater. Lett. 131 167CrossRefGoogle Scholar
  6. 6.
    Ghosh B, Bhattacharjee R, Banerjee P and Das S 2011 Appl. Surf. Sci. 257 3670CrossRefGoogle Scholar
  7. 7.
    Ristov M, Sinadinovski G, Mitreski M and Ristova M 2001 Sol. Energy Mater. Sol. Cells 69 17CrossRefGoogle Scholar
  8. 8.
    Ghosh B, Das M, Banerjee P and Das S 2009 Semicond. Sci. Technol. 24 025024CrossRefGoogle Scholar
  9. 9.
    Vidal J, Lany S, Avezac M, Zunger A, Zakutayev A, Francis J et al 2012 Appl. Phys. Lett. 100 032104CrossRefGoogle Scholar
  10. 10.
    Louise S Price, Ivan P Parkin, Amanda Hardy M E and Robin Clark J H 1999 Chem. Mater. 11 1792CrossRefGoogle Scholar
  11. 11.
    Ramakrishna Reddy K T, Purandar Reddy P, Miles R W and Datta P K 2001 Opt. Mater. 17 295CrossRefGoogle Scholar
  12. 12.
    Chalapathi U, Poornaprakash B and Si-Hyun P, 2016 Sol. Energy 139 238CrossRefGoogle Scholar
  13. 13.
    Henry J, Mohanraj K, Kannan S, Barathan S and Sivakumar G 2013 Eur. Phys. J. Appl. Phys. 61 10301CrossRefGoogle Scholar
  14. 14.
    Miles R W, Ogah O E, Zoppi G and Forbes I 2009 Thin Solid Films 517 4702CrossRefGoogle Scholar
  15. 15.
    Ghazali A, Zainal Z, Hussein M Z and Kassim A 1998 Sol. Energy Mater. Sol. Cells 55 237CrossRefGoogle Scholar
  16. 16.
    Ramakrishna Reddy K T, Purandhara Reddy P, Datta P K and Miles R W 2002 Thin Solid Films 404 116CrossRefGoogle Scholar
  17. 17.
    Sinsermsuksakul P, Heo J, Noh W, Hock A S and Gordon R G 2011 Adv. Energy Mater. 1 1116CrossRefGoogle Scholar
  18. 18.
    Abdelrahman A E, Yunus W M M and Arof A K 2012 J. Non-Cryst. Solids 358 1447CrossRefGoogle Scholar
  19. 19.
    Reddy N K and Ramakrishna Reddy K T 1998 Thin Solid Films 325 4CrossRefGoogle Scholar
  20. 20.
    Guneri E, Ulutas C, Kirmizigul F, Altindemir G, Gode F and Gumus C 2010 Appl. Surf. Sci. 257 1189CrossRefGoogle Scholar
  21. 21.
    Santhosh Kumar K, Manoharan C, Dhana Pandian S, Gowri Manohari A and Mahalingam T 2014 Optik 125 3996CrossRefGoogle Scholar
  22. 22.
    Sajeesh T H, Jinesh K B, Sudha Kartha C and Vijayakumar K P 2012 Appl. Surf. Sci. 258 6870CrossRefGoogle Scholar
  23. 23.
    Voznyi A, Kosyak V, Opanasyuk A, Tirkusova N, Grase L, Medvids A et al 2016 Mater. Chem. Phys. 173 1CrossRefGoogle Scholar
  24. 24.
    Opanasyuk A S, Kurbatov D I, Kosyak V V, Kshniakina S I and Danilchenko S N 2012 Crystallogr. Rep. 57 927CrossRefGoogle Scholar
  25. 25.
    Hadjiev V G, De D, Peng H B, Manongdo J and Guloy A M 2013 Phys. Rev. B 87 104302CrossRefGoogle Scholar
  26. 26.
    Kherchachi I B, Saidi H, Attaf A, Attaf N, Bouhdjar A, Bendj-didi H et al 2016 Optik 127 4043CrossRefGoogle Scholar
  27. 27.
    Sinsermsuksakul P, Heo J Y, Noh W, Hock A S and Gordon R G 2011 Adv. Energy Mater. 1 1116CrossRefGoogle Scholar
  28. 28.
    Reddy N K, Devika M and Gunasekhar K R 2014 Thin Solid Films 558 326CrossRefGoogle Scholar
  29. 29.
    Srinivasa Reddy T and Santhosh Kumar M C 2016 RSC Adv. 6 95680CrossRefGoogle Scholar
  30. 30.
    Zimin S P, Gorlachev E S, Amirov I I, Naumov V V, Dubov G A, Gremenok V F et al 2014 Semicond. Sci. Technol. 29 015009CrossRefGoogle Scholar
  31. 31.
    Rath T, Gury L, Sanchez-Molina I, Martinez L and Haque S A 2015 Chem. Commun. 51 10198CrossRefGoogle Scholar
  32. 32.
    Sall T, Mollar M and Mari B 2016 J. Mater. Sci. 51 7607CrossRefGoogle Scholar
  33. 33.
    Xu J, Yang Y and Xie Z 2014 Chalcogenide Lett. 11 485Google Scholar
  34. 34.
    Majeed Khan M A and Khan W 2016 J. Electron. Mater. 8 4453CrossRefGoogle Scholar
  35. 35.
    Selim M S, Gouda M E, El-Shaarawy M G, Salem A M and Abd El-Ghany W A 2013 Thin Solid Films 527 164CrossRefGoogle Scholar
  36. 36.
    Cheng S, He Y, Chen G, Cho E-C and Conibeer G 2008 Surf. Coat. Technol. 202 6070CrossRefGoogle Scholar
  37. 37.
    Nair P K, Garcia-Angelmo A R and Nair M T S 2016 Phys. Status Solidi A 213 170CrossRefGoogle Scholar
  38. 38.
    Jain P and Arun P 2013 Thin Solid Films 548 241CrossRefGoogle Scholar
  39. 39.
    Ramakrishna Reddy K T, Sreedevi G and Miles R W 2013 J. Mater. Sci. Eng. A 3 182Google Scholar
  40. 40.
    El-Nahass M M, Zeyada H M, Aziz M S and El-Ghamaz N A 2002 Opt. Mater. 20 159CrossRefGoogle Scholar
  41. 41.
    Kiruthigaa G, Manoharan C, Bououdina M, Ramalingam S and Raju C 2015 Solid State Sci. 44 32CrossRefGoogle Scholar
  42. 42.
    Ghosh B, Das M, Banerjee P and Das S 2008 Appl. Surf. Sci. 254 6436CrossRefGoogle Scholar
  43. 43.
    Reddy N K and Ramakrishna Reddy K T 2005 Solid-State Electron. 49 902CrossRefGoogle Scholar
  44. 44.
    Devika M, Reddy N K, Ramesh K, Ganesan V, Gopal E S R and Ramakrishna Reddy K T 2006 Appl. Surf. Sci. 253 1673CrossRefGoogle Scholar
  45. 45.
    Sajeesh T H, Anita Warrier R, Sudha Kartha C and Vijayakumar K P 2010 Thin Solid Films 518 4370CrossRefGoogle Scholar
  46. 46.
    Barote M A, Yadav A A, Chavan T V and Masumdar E U 2011 Digest J. Nanomater. Biostruct. 6 979Google Scholar
  47. 47.
    Ramakrishna Reddy K T, Reddy N K and Miles R W 2006 Sol. Energy Mater. Sol. Cells 90 3041CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • A M S Arulanantham
    • 1
    Email author
  • S Valanarasu
    • 1
  • K Jeyadheepan
    • 2
  • A Kathalingam
    • 3
  1. 1.PG and Research Department of PhysicsArul Anandar CollegeKarumathurIndia
  2. 2.Multifunctional Materials and Devices Lab, Anusandhan Kendra – II, School of Electrical and Electronics EngineeringSASTRA UniversityTirumalaisamudram, ThanjavurIndia
  3. 3.Millimeter-Wave Innovation Technology Research Center (MINT)Dongguk University SeoulSeoulRepublic of Korea

Personalised recommendations