Investigation of electrical properties of \(\hbox {In/ZnIn}_{2} \hbox {Te}_{4}/\hbox {n-Si/Ag}~\hbox {diode}\)

  • H H GüllüEmail author


\(\hbox {In/ZnIn}_{2}\hbox {Te}_{4}/\hbox {n-Si/Ag}\) diode structure was fabricated by the thermal deposition of a \(\hbox {ZnIn}_{2}\hbox {Te}_{4}\) thin film on n-Si wafer substrate with Ag metal back contact. The structural characteristics of the film were investigated in terms of composition, X-ray diffraction and topographic measurements. The diode structure was completed by evaporating In metal on the film surface as a top contact. The diode parameters as saturation current, barrier height, ideality factor and series resistance values were determined from the semi-logarithmic forward bias current–voltage characteristics of the diode. According to the assumption of the thermionic emission model, the ideality factor was found higher than unity and it was also observed that the barrier height and ideality factor showed a temperature-dependent profile resulting from the non-ideality in the current–voltage behaviour of the diode. As a result, the model was modified by considering inhomogeneous barrier formation and Gaussian distribution was expected to be dominant on 1.37 eV mean barrier height with a deviation of 0.18. In addition, the voltage dependence of these Gaussian diode parameters was investigated. The forward and reverse bias capacitance and conductance measurements showed that there was a slight change in capacitance values with frequency whereas the conductance values decreased with increase in frequency. In addition to the current–voltage analysis, the distribution of density of interface states and the values of series resistance were evaluated as a function of bias voltage and frequency.


Thin film thermal evaporation thermionic emission 



We would like to thank M Parlak for his assistance and guidance in the experiments which were carried out in the Department of Physics, Center for Solar Energy Research and Applications (GÜNAM) at Middle East Technical University.


  1. 1.
    Seyam M A M, El-Shair H T and Salem G F 2008 Eur. Phys. J. Appl. Phys.  41 221CrossRefGoogle Scholar
  2. 2.
    Rao G K, Bangera K V and Shivakumar G K 2013 Curr. Appl. Phys.  13 298CrossRefGoogle Scholar
  3. 3.
    Acharya K P, Erlacher A and Ullrich B 2007 Thin Solid Films  515 4066CrossRefGoogle Scholar
  4. 4.
    Yoshino K, Memon A, Yoneta M, Ohmori K, Saito H and Ohishi M 2002 Phys. Status Solidi B  229 977CrossRefGoogle Scholar
  5. 5.
    Wu Q, Litz M and Zhang X-C 1996 Appl. Phys. Lett.  68 2924CrossRefGoogle Scholar
  6. 6.
    Guo Q, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H et al 2007 Solid State Commun.  141 188CrossRefGoogle Scholar
  7. 7.
    Spath B, Fritsche J, Sauberlich F, Klein A and Jaegermann W 2005 Thin Solid Films  480 204CrossRefGoogle Scholar
  8. 8.
    Park C H and Chadi D J 1995 Phys. Rev. B  52 11884CrossRefGoogle Scholar
  9. 9.
    Bose D N and Bhunia S 2005 Bull. Mater. Sci.  28 647CrossRefGoogle Scholar
  10. 10.
    Aqili A K S, Saleh A J, Ali Z and Al-Omari S 2012 J. Alloys Compd. 520 83CrossRefGoogle Scholar
  11. 11.
    Manca P, Raga F and Spiga A 1973 Phys. Status Solidi A  16 K105CrossRefGoogle Scholar
  12. 12.
    Manca P, Raga F and Spiga A 1974 Nuovo Cimento B  19 15CrossRefGoogle Scholar
  13. 13.
    Neumann H, Kissinger W and Levy F 1990 Cryst. Res. Technol.  25 1189CrossRefGoogle Scholar
  14. 14.
    Neumann H, Kissinger W, Levy F, Sobotta H and Riede V 1990 Cryst. Res. Technol.  25 841CrossRefGoogle Scholar
  15. 15.
    Matsumoto Y, Ozaki S and Adachi S 1999 J. Appl. Phys.  86 3705CrossRefGoogle Scholar
  16. 16.
    Ozaki S and Adachi S 2001 Phys. Rev. B  64 085208CrossRefGoogle Scholar
  17. 17.
    Gullu H H, Bayrakli O, Candan I, Coskun E and Parlak M 2013 J. Alloys Compd.  566 83CrossRefGoogle Scholar
  18. 18.
    Shay J L and Wernick J H 1975 Ternary chalcopyrite semiconductors: growth, electronic properties and applications (Oxford: Pergamon Press)Google Scholar
  19. 19.
    Yadav S P, Shinde P S, Rajpure K Y and Bhosale C H 2008 Sol. Energy Mater. Sol. Cells  92 453CrossRefGoogle Scholar
  20. 20.
    Gentile A L 1985 Prog. Cryst. Growth Charact.  10 241CrossRefGoogle Scholar
  21. 21.
    Miller A, Lockwood D J, Mackinnon A and Weaire D J 1976 J. Phys. C  9 2997CrossRefGoogle Scholar
  22. 22.
    Samanta L K, Ghosh D K and Ghosh P S 1989 Phys. Rev. B  39 10261CrossRefGoogle Scholar
  23. 23.
    Radautsan S I, Georgobiani A N and Tiginyanu I M 1985 Prog. Cryst. Growth Charact.  10 40Google Scholar
  24. 24.
    Liu R, Xi L, Liu H, Shi X, Zhang W and Chen L 2012 Chem. Commun.  48 3818CrossRefGoogle Scholar
  25. 25.
    Luo L, Jie W, Xu Y, He Y, Xu L and Fu L 2014 CrystEngComm 33 7660CrossRefGoogle Scholar
  26. 26.
    Zhang S and Shi L 2018 Int. J. Mod. Phys.  32 1850026CrossRefGoogle Scholar
  27. 27.
    Qui K, Li L, Huang J, Tang K, Zhang X, Cao M et al 2017 Surf. Coat. Technol.  320 153CrossRefGoogle Scholar
  28. 28.
    Sze S M and Kwok K N 2010 Physics of semiconductor devices (USA: Wiley)Google Scholar
  29. 29.
    Yıldız D E, Altindal S and Kanbur H 2008 J. Appl. Phys.  103 124502CrossRefGoogle Scholar
  30. 30.
    Dokme I 2011 Microelectron. Reliab.  51 360CrossRefGoogle Scholar
  31. 31.
    Altindal S, Karadeniz S, Tugluoglu N and Tataroglu A 2003 Solid State Electron.  47 1847CrossRefGoogle Scholar
  32. 32.
    Gullu H H, Bayrakli O, Yildiz D E and Parlak M 2017 J. Mater. Sci. Mater. Electron.  28 17806CrossRefGoogle Scholar
  33. 33.
    Terlemezoglu M, Bayrakli O, Gullu H H, Colakoglu T, Yildiz D E and Parlak M 2018 J. Mater. Sci. Mater. Electron.  29 5264CrossRefGoogle Scholar
  34. 34.
    Altuntas H, Altindal S, Shtrikman H and Ozcelik S 2009 Microelectron. Reliab.  49 904CrossRefGoogle Scholar
  35. 35.
    Pur F Z and Tataroglu A 2012 Phys. Scr.  86 035802CrossRefGoogle Scholar
  36. 36.
    Kaleli M, Parlak M and Ercelebi C 2011 Semicond. Sci. Technol.  26 105013CrossRefGoogle Scholar
  37. 37.
    Cheung S K and Cheung N W 1986 Appl. Phys. Lett.  49 85CrossRefGoogle Scholar
  38. 38.
    Schroder D K 2006 Semiconductor material and device characterization (New Jersey: Wiley)Google Scholar
  39. 39.
    Tung R T 1992 Phys. Rev. B  45 13509CrossRefGoogle Scholar
  40. 40.
    Chand S and Kumar J 1995 Semicond. Sci. Technol.  10 1680CrossRefGoogle Scholar
  41. 41.
    Werner J H and Guttler H H 1991 J. Appl. Phys.  69 1552CrossRefGoogle Scholar
  42. 42.
    Mtangi W, Aurat F D, Nyamhere C, Janse van Rensburg P J, Diale M and Chawanda A 2009 Physica B  404 1092Google Scholar
  43. 43.
    Kumar A, Sharma K K, Kumar F, Chand S and Kumar A 2017 J. Electron. Mater.  46 6423Google Scholar
  44. 44.
    Chattopadhyay P and Daw A N 1986 Solid State Electron. 29 555CrossRefGoogle Scholar
  45. 45.
    Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys.  4 1589CrossRefGoogle Scholar
  46. 46.
    Tataroglu A and Altindal S 2009 J. Alloys Compd.  484 405CrossRefGoogle Scholar
  47. 47.
    Kim C Y, Lee H S, Woo J-K, Choi C K, Navamathavan R, Lee K-M et al 2010 J. Korean Phys. Soc.  57 1976CrossRefGoogle Scholar
  48. 48.
    Tataroglu A and Altindal S 2008 Microelectron. Eng.  85 2256CrossRefGoogle Scholar
  49. 49.
    Castagne R and Vapaille A 1971 Surf. Sci.  28 175CrossRefGoogle Scholar
  50. 50.
    Hung K K and Cheng Y C 1987 J. Appl. Phys. 62 4204CrossRefGoogle Scholar
  51. 51.
    Hill W A and Coleman C C 1980 Solid State Electron.  23 987CrossRefGoogle Scholar
  52. 52.
    Kar S and Dahlke W E 1972 Solid State Electron.  15 221CrossRefGoogle Scholar
  53. 53.
    Nicollian E H and Brews J R 1982 MOS (metal oxide semiconductor) physics and technology (New York: Wiley)Google Scholar
  54. 54.
    Farag A A M, Gunduz B, Yakuphanoglu F and Farooq W A 2010 Synth. Met.  160 2259Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations