Advertisement

Preparation and characterization of low cost flat ceramic membranes from easily available potters’ clay for dye separation

  • Jitu Saikia
  • Susmita Sarmah
  • Jayanta J Bora
  • Bipul Das
  • Rajib Lochan GoswameeEmail author
Article
  • 18 Downloads

Abstract

In the present day scenario, the crisis of safe drinking water is an extremely serious issue across many parts of the globe and needs efficient methods to overcome this problem. The effort made in this study is to develop a method to prepare a ceramic membrane with locally available cheap compositions such as potters’ clay, stone dust and tea waste materials for efficient adsorptive dye removal from water. The preparation of ceramic membrane was carried out by a paste pressing method and sintered at an optimized temperature of \(900{^{\circ }}\hbox {C}\) to obtain flat ceramic membranes of 42 mm in diameter and \(3 \pm 0.5~\hbox {mm}\) thickness with good thermal and chemical stabilities with 52.51% porosity and average pore size of \(0.49~\upmu \hbox {m}\). The membrane was capable of decolouring methylene blue and congo red from water with good efficiency and the used membrane was regenerated by calcining at \(400{^{\circ }}\hbox {C}\) for 30 min without much loss of its efficiency. Development of newer advanced products with the available local resources may be another way to sustain the small scale industry and livelihood of the people around.

Keywords

Potters’ clay ceramic membrane characterization decolourization reusability 

Notes

Acknowledgements

We are thankful to the Director, CSIR-NEIST, Jorhat, India, for his kind permission to publish this work and to Department of Science and Technology (DST), New Delhi (GPP-296), for financial support, project no. CSC-0408 for FESEM facility and AcSIR, India, for giving the opportunity for PhD registration.

References

  1. 1.
    Jedidi I, Khemakhem S, Larbot A and Amar R B 2009 Ceram. Int. 35 2747CrossRefGoogle Scholar
  2. 2.
    Khemakhem S, Larbot A and Amar R B 2009 Ceram. Int. 35 55CrossRefGoogle Scholar
  3. 3.
    Baraka N E, Saffaj N, Mamouni R, Laknifli A, Younssi S A, Albizane A et al 2014 Desalin. Water Treat. 52 1357CrossRefGoogle Scholar
  4. 4.
    Li L, Chen M, Dong Y, Dong X, Cerneaux S, Hampshire S et al 2016 J. Eur. Ceram. Soc. 36 2057CrossRefGoogle Scholar
  5. 5.
    Das B, Chakrabarty B and Barkakati P 2016 Ceram. Int. 42 14326CrossRefGoogle Scholar
  6. 6.
    Benfer S, Arki P and Tomandl G 2004 Adv. Eng. Mater. 6 495CrossRefGoogle Scholar
  7. 7.
    Sudilovskiy P S, Kagramanov G G, Trushin A M and Kolesnikov V A 2007 Clean Technol. Environ. Policy 9 189Google Scholar
  8. 8.
    Parma S and Chowdhury P 2014 IJRET 3 725Google Scholar
  9. 9.
    Sharmiwati M S, Mizan R M and Noorhelinahani A B 2014 IJSTR 3 103Google Scholar
  10. 10.
    Hristov P, Yoleva A, Djambazov S, Chukovska I and Dimitrov D 2012 J. Univ. Chem. Technol. Metall. 47 476Google Scholar
  11. 11.
    Mert B K and Kestioglu K 2014 Clean Technol. Environ. Policy 16 1615Google Scholar
  12. 12.
    Acharya N K 2017 Bull. Mater. Sci. 40 537CrossRefGoogle Scholar
  13. 13.
    Akbarnezhad S, Mousavi S M and Sarhaddi R 2010 Indian J. Sci. Technol. 3 1048Google Scholar
  14. 14.
    Nandi B K, Das B, Uppaluri R and Purkait M K 2009 J. Food Eng. 95 597CrossRefGoogle Scholar
  15. 15.
    Hildebrand C, Kuglin V B, Brandao H L, Vilar V J P, Ulson G, de Souza S M A et al 2014 Clean Technol. Environ. Policy 16 591Google Scholar
  16. 16.
    Qiu W Z, Yang H C, Wan L S and Xu Z K 2015 J. Mater. Chem. A 3 14438CrossRefGoogle Scholar
  17. 17.
    Ghosh U K, Pradhan N C and Adhikari B 2006 Bull. Mater. Sci. 29 225CrossRefGoogle Scholar
  18. 18.
    Sokolowski K, Fraczek-Szczypta A, Tomala J and Blazewicz S 2018 Korean J. Chem. Eng. 35 1354CrossRefGoogle Scholar
  19. 19.
    Guizard C, Ayral A and Julbe A 2002 Desalination 147 275CrossRefGoogle Scholar
  20. 20.
    Friend K A D, Wiesner M R and Barron A R 2003 J. Membr. Sci. 224 11CrossRefGoogle Scholar
  21. 21.
    Gestel T V, Vandecasteele C, Buekenhoudt A, Dotremont C, Luyten J, Leysen R et al 2002 J. Membr. Sci. 207 73CrossRefGoogle Scholar
  22. 22.
    Falamaki C, Shafiee A M and Aghaie A 2004 J. Eur. Ceram. Soc. 24 2285CrossRefGoogle Scholar
  23. 23.
    Wang Y H, Tian T F, Liu X Q and Meng G Y 2006 J. Membr. Sci. 280 261CrossRefGoogle Scholar
  24. 24.
    Yoshino Y, Suzuki T, Nair B N, Taguchi H and Itoh N 2005 J. Membr. Sci. 267 8CrossRefGoogle Scholar
  25. 25.
    Singh P S, Chaudhri S G, Kansara A M, Schwieger W, Selvam T, Reuss S et al 2015 Bull. Mater. Sci. 38 565CrossRefGoogle Scholar
  26. 26.
    Doke S M and Yadav G D 2016 Clean Technol. Environ. Policy 18 139Google Scholar
  27. 27.
    Chen N, Feng C, Yang J, Gao Y, Li M and Zhang B 2013 Clean Technol. Environ. Policy 15 375Google Scholar
  28. 28.
    Morris R E, Krikanova E and Shadman F 2004 Clean Technol. Environ. Policy 6 96Google Scholar
  29. 29.
    Potdar A, Sukla A and Kumar A 2002 J. Membr. Sci. 210 209Google Scholar
  30. 30.
    Belouatek A, Benderdouche N, Addou A, Ouagued A and Bettahar N 2005 Microporous Mesoporous Mater. 85 163CrossRefGoogle Scholar
  31. 31.
    Lorente-Ayza M M, Mestre S, Menendez M and Sanchez E 2015 J. Eur. Ceram. Soc. 35 3681CrossRefGoogle Scholar
  32. 32.
    Masmoudia S, Larbot A, Fekia H E and Amar R B 2006 Desalination 190 89CrossRefGoogle Scholar
  33. 33.
    Belibi P B, Nguemtchouin M M G, Rivallin M, Nsami J N, Sieliechi J, Cerneaux S et al 2015 Ceram. Int. 41 2752CrossRefGoogle Scholar
  34. 34.
    Liu J, Dong Y, Dong X, Hampshire S, Zhu L, Zhu Z et al 2016 J. Eur. Ceram. Soc. 36 1059CrossRefGoogle Scholar
  35. 35.
    Jana S, Purkait M K and Mohanty K 2010 Appl. Clay Sci. 47 317CrossRefGoogle Scholar
  36. 36.
    Majouli A, Younssi S A, Tahiri S, Albizane A, Loukili H and Belhaj M 2011 Desalination 277 61CrossRefGoogle Scholar
  37. 37.
    Chen X, Yong S, Yeo E, Woo J Y I, Zhou Y and Hong L 2017 J. Eur. Ceram. Soc. 37 3443CrossRefGoogle Scholar
  38. 38.
    Kouras N, Harabi A, Bouzerara F, Foughali L, Policicchio A, Stelitano S et al 2017 J. Eur. Ceram. Soc. 37 3159CrossRefGoogle Scholar
  39. 39.
    Achiou B, Elomari H, Ouammou M, Albizane A, Bennazha J, Younssi S A et al 2016 J. Mater. Environ. Sci. 7 196Google Scholar
  40. 40.
    Foorginezhad S and Zerafat M M 2017 Ceram. Int. 43 15146CrossRefGoogle Scholar
  41. 41.
    Rawat M and Bulasara V K 2018 Korean J. Chem. Eng. 35 725CrossRefGoogle Scholar
  42. 42.
    Jafry H R, Liga M V, Li Q and Barron A R 2010 New J. Chem. 35 400CrossRefGoogle Scholar
  43. 43.
    Scalese S, Nicotera I, D’Angelo D, Filice S, Libertino S, Simari C et al 2016 New J. Chem. 40 3654CrossRefGoogle Scholar
  44. 44.
    Buan A C J, Lynn A, Soliven A D, Cao E P, Barraquio V L and Barraquio W L 2010 Philipp. J. Sci. 139 71Google Scholar
  45. 45.
    Abinayasri P, Nageswari M, Meenarathi B and Anbarasan R 2017 Bull. Mater. Sci. 40 591CrossRefGoogle Scholar
  46. 46.
    Xia S, Zhang L, Pan G, Qian P and Ni Z 2015 Phys. Chem. Chem. Phys. 17 5345CrossRefGoogle Scholar
  47. 47.
    Zhao D H, Zhang Y L, Wei Y P and Gao H W 2009 J. Mater. Chem. 19 7239CrossRefGoogle Scholar
  48. 48.
    Valmurugan P, Kumar V R and Dhinakaran G 2011 IJES 1 976Google Scholar
  49. 49.
    Gillman P K 2006 Anaesthesia 61 1007CrossRefGoogle Scholar
  50. 50.
    Pathania D, Sharma S and Singh P 2017 Arab J. Chem. 10 S1445CrossRefGoogle Scholar
  51. 51.
    Amalraj A and Pius A 2014 Sep. Sci. Technol. 49 90Google Scholar
  52. 52.
    Patra G, Barnwal R, Behera S K and Meikap B C 2018 J. Environ. Chem. Eng. 6 5204CrossRefGoogle Scholar
  53. 53.
    Mohan D, Singh K P, Singh G and Kumar K 2002 Ind. Eng. Chem. Res. 41 3688CrossRefGoogle Scholar
  54. 54.
    Bhatnagar A, Vilar V J P, Botelho C M S and Boaventura R A R 2011 Environ. Technol. 32 231Google Scholar
  55. 55.
    Kannan C, Muthuraja K and Devi M R 2013 J. Hazard. Mater. 244–245 10CrossRefGoogle Scholar
  56. 56.
    Wu R, Qua J and Chen Y 2005 Water Res. 39 630CrossRefGoogle Scholar
  57. 57.
    Ouyang X, Li W, Xie S, Zhai T, Yu M, Gan J et al 2013 New J. Chem. 37 585CrossRefGoogle Scholar
  58. 58.
    Tan K B, Vakili M, Horri B A, Poh P E, Abdullah A Z and Salamatinia B 2015 Sep. Purif. Technol. 150 229Google Scholar
  59. 59.
    Mahmoud H R, Ibrahim S M and El-Molla S A 2016 Adv. Powder Technol. 27 223CrossRefGoogle Scholar
  60. 60.
    Anastopoulos I, Hosseini-Bandegharaei A, Fu J C A, Mitropoulos A C and Kyzas G Z 2018 J. Disper. Sci. Technol. 39 836CrossRefGoogle Scholar
  61. 61.
    Chawla S, Uppal H, Yadav M, Bahadur N and Singh N 2017 Ecotoxicol. Environ. Saf. 135 68CrossRefGoogle Scholar
  62. 62.
    Saikia J, Sarmah S, Ahmed T H, Kalita P J and Goswamee R L 2017 J. Environ. Chem. Eng. 5 2488CrossRefGoogle Scholar
  63. 63.
    Manohar 2012 IJMER 2 1492Google Scholar
  64. 64.
    Mouiya M, Abourriche A, Bouazizi A, Benhammou A, Hafiane Y E, Abouliatim Y et al 2018 Desalination 427 42Google Scholar
  65. 65.
    Tolba G M K, Bastaweesy A M, Ashour E A, Abdelmoez W, Khalil K A and Barakat N A M 2016 Arab J. Chem. 9 287Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Advanced Materials Group, Materials Science and Technology DivisionCSIR-North East Institute of Science and TechnologyJorhatIndia
  2. 2.Academy of Scientific and Innovative ResearchJorhatIndia
  3. 3.General Engineering Group, Engineering Science and Technology DivisionCSIR-North East Institute of Science and TechnologyJorhatIndia
  4. 4.Chemical Engineering Group, Engineering Science and Technology DivisionCSIR-North East Institute of Science and TechnologyJorhatIndia

Personalised recommendations