Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads

  • Mohamed Hassan
  • Xiaoku Ran
  • Ying Yuan
  • Xiaoning Luan
  • De-Qiang DouEmail author


Ginsenoside transformation has received significant attention from scientists. The main objective of this study is to use immobilized enzymes in ginsenoside transformation. Factors affecting immobilization process were studied; carrageenan beads treated with polyethyleneimine and then activated using glutaraldehyde (GA) were used for snailase enzyme immobilization. The functionalized gel beads were characterized using Fourier transform infrared spectroscopy to verify the modification process. Furthermore, the optimum conditions for biotransformation of ginsenoside were also deliberated and showed that optimum biotransformation pH is 4.5 and 5–5.5 and temperature 50 and \(60^{\circ }\hbox {C}\) for free and immobilized snailase, respectively. Michaelis constants, \(K_{\mathrm{m}}\) and \(V_{\max }\), were also studied. The immobilized enzyme retains 96% of its initial activity after being used 10 consecutive times. The results clearly suggested that ginsenoside transformation was performed using immobilized snailase; this process can reduce the transformation cost as the enzyme can be reused many times.


Panax ginseng snailase enzyme covalent immobilization kinetic parameters reusability 



The authors want to thank Prof Ghada Awad and Prof Mona Esawy for their generous help in revising the paper’s language.

Supplementary material

12034_2019_1730_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (docx 32 KB)


  1. 1.
    Seong-Eun P, Chang-Su N, Seon-A Y, Seung-Ho S and Hong-Seok S 2017 J. Ginseng Res. 41 36CrossRefGoogle Scholar
  2. 2.
    Deqiang D O U, Wei L I, Na G U O, Rui F U, Yuping P E I, Kazuo K et al 2006 Chem. Pharm. Bull. 54 751CrossRefGoogle Scholar
  3. 3.
    Chun-Ying L, Rui-Xin Z, Chang-Kai S, Ying-Hua J, Hong-Shan Y, Tian-Yang Z et al 2015 J. Ginseng Res. 39 221CrossRefGoogle Scholar
  4. 4.
    Dou D Q, Hou W B and Chen Y J 1998 Planta Med. 64 585CrossRefGoogle Scholar
  5. 5.
    Zheng X, Jia L, Zhixun Z, Yingying L, Deqiang D and Jinming Z 2013 Nat. Prod. Res. 27 1271CrossRefGoogle Scholar
  6. 6.
    Bae E A, Shin J E and Kim D H 2005 Biol. Pharm. Bull. 28 1903CrossRefGoogle Scholar
  7. 7.
    Cui C H, Kim S C and Im W T 2013 Appl. Microbiol. Biotechnol. 97 649CrossRefGoogle Scholar
  8. 8.
    Hasegawa H, Sung J H, Matsumiya S and Uchiyama M 1996 Planta Med. 62 453CrossRefGoogle Scholar
  9. 9.
    Park C S, Yoo M H, Noh K H and Oh D K 2010 Appl. Microbiol. Biotechnol. 87 9CrossRefGoogle Scholar
  10. 10.
    Hasegawa H 2004 J. Pharmacol. Sci. 95 153CrossRefGoogle Scholar
  11. 11.
    Cui C H, Liu Q M, Kim J K, Sung B H, Kim S G, Kim S C et al 2013 Appl. Environ. Microbiol. 79 5788CrossRefGoogle Scholar
  12. 12.
    Jin X F, Yu H S, Wang D M, Liu T Q, Liu C Y, An D S et al 2012 J. Microbiol. Biotechnol. 22 343CrossRefGoogle Scholar
  13. 13.
    Wei L, Ming Z, Yi-Nan Z, Jing L, Ying-Ping W and Yun-Jing W 2011 Molecules 16 10093CrossRefGoogle Scholar
  14. 14.
    Franzreb M, Siemann-Herzberg M, Hobley T J and Thomas O R 2006 Appl. Microbiol. Biotechnol. 70 505CrossRefGoogle Scholar
  15. 15.
    Přenosil J E, Kut Ö M, Dunn I J and Heinzle E 2000 Practical methods for biocatalysis and biotransformations (UK: Wiley-VCH Verlag GmbH & Co. KGaA)Google Scholar
  16. 16.
    Magdy M E and Mohamed E H 2014 Biomed. Res. Int. 2014 817985Google Scholar
  17. 17.
    Ying Y, Xiaoning L, Xiao K R, Mohamed E H and Deqiang D 2016 J. Mol. Catal. B: Enzym. 133 S525CrossRefGoogle Scholar
  18. 18.
    Magdy M E, Mohamed E H and Ghada E A A 2013 J. Colloid Sci. Biotechnol. 2 27CrossRefGoogle Scholar
  19. 19.
    Tamer M T, Mohamed A H, Ahmed M O, Walid M A B, Mohamed E H, Muhammad E A E et al 2016 Process Biochem. 51 1721CrossRefGoogle Scholar
  20. 20.
    Yu Z, Liu Q, Cui L, Jia X, Zhang Z and Jin X 2014 Chin. Tradit. Herb Drugs 45 3092Google Scholar
  21. 21.
    Zhou J 2010 J. Agric. Food Chem. 58 6741CrossRefGoogle Scholar
  22. 22.
    Chen S H, Yen Y H, Wang C L and Wang S L 2003 Enzyme Microb. Technol. 33 643CrossRefGoogle Scholar
  23. 23.
    De maio A, El-Masry M M and Mita D G 2003 J. Mol. Catal. B: Enzym. 21 239Google Scholar
  24. 24.
    Azevedo A M, Fonseca L P and Prazeres D M F 1999 J. Chem. Technol. Biotechnol. 74 1110CrossRefGoogle Scholar
  25. 25.
    Ghada E A A, Hala R W, Abeer A A E A and Mohamed E H 2017 Colloid Polym. Sci. 295 495CrossRefGoogle Scholar
  26. 26.
    Wahba M I and Hassan M E 2015 Biopolymers  103 675CrossRefGoogle Scholar
  27. 27.
    Hasegawa H, Sung J H and Benno Y 1997 Planta Med. 63 436CrossRefGoogle Scholar
  28. 28.
    Wang C Z, Kim K E, Du G J, Qi L W, Wen X D, Li P et al 2011 Am. J. Chin. Med. 39 1161CrossRefGoogle Scholar
  29. 29.
    Peng J, Ma Y, Chen Y, Liu C, Gao X and Zhou J 2015 Chin. Tradit. Herb Drugs 22 3326Google Scholar
  30. 30.
    Peng J, Ma Y, Chen Y, Liu C, Gao X and Zhou J 2015 Acta Pharm. Sin. 12 1652Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mohamed Hassan
    • 1
    • 2
  • Xiaoku Ran
    • 1
  • Ying Yuan
    • 1
  • Xiaoning Luan
    • 1
  • De-Qiang Dou
    • 1
    Email author
  1. 1.College of PharmacyLiaoning University of Traditional Chinese MedicineDalianPeople’s Republic of China
  2. 2.Centre of Excellence, Encapsulation and Nanobiotechnology Group, Chemistry of Natural and Microbial Products DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations