Advertisement

Enhanced dielectric and piezoelectric properties in microwave sintered (\(\hbox {Ba}_{0.997}\hbox {Nd}_{0.003})\hbox {TiO}_{3}\) ceramic when compared to conventional sintered ceramics

  • S MAHBOOBEmail author
  • RIZWANA
  • G PRASAD
  • G S KUMAR
Article
  • 28 Downloads

Abstract

Dielectric, conductivity and piezoelectric properties have been studied on (\(\hbox {Ba}_{0.997}\hbox {Nd}_{0.003})\hbox {TiO}_{3}\) ceramic samples prepared through microwave sintered (MWS) and conventional sintered (CS) routes and the results are presented in this paper. The room temperature dielectric constant at 10 kHz for CS and MWS samples are 1245 and 5250 respectively. Room temperature dielectric constant in MWS sample was almost four times higher than that of the CS sample. The value of \(K_{\mathrm{t}}\) is found to be 0.998 and 0.997; whereas the value of \(d_{33}\) is \(7.72 \hbox { nm V}^{-1}\) (573 K) and \(444.66 \hbox { nm V}^{-1}\) (573 K) for CS and MWS samples, respectively. In the present study almost 57 times enhancement in piezoelectric charge constant (\(d_{33}\)) is observed for the MWS \(\hbox {Ba}_{0.997}\hbox {Nd}_{0.003}\hbox {TiO}_{3}\) ceramic when compared to the CS ceramic.

Keywords

(\(\hbox {Ba}_{0.997}\hbox {Nd}_{0.003})\hbox {TiO}_{3}\) ceramic microwave sintering dielectric conductivity impedance piezoelectric 

Notes

Acknowledgements

We like to thank DST and DRDO, Delhi, India for financial support for conducting the present research work.

References

  1. 1.
    Syed M, Dutta A B, Swaminathan G, Prasad G and Kumar G S 2005 Ferroelectrics 326 79CrossRefGoogle Scholar
  2. 2.
    Syed M, Dutta A B, Chandra Prakash, Swaminathan G, Suryanarayana S V, Prasad G et al 2006 Mater. Sci. Eng. B 134 36CrossRefGoogle Scholar
  3. 3.
    Horng-Yi C, Syh-Yuh C and Ching-Iuan S 2008 Mater. Lett. 62 3620CrossRefGoogle Scholar
  4. 4.
    Ying-Chieh L, Yu-Yuan Y and Pei-Rong T 2012 J. Eur. Ceram. Soc. 32 1725CrossRefGoogle Scholar
  5. 5.
    Raghavendra Reddy V, Upadhyay S K, Gupta A, Awasthi Anand M and Hussain S 2014 Ceram. Int. 40 8333CrossRefGoogle Scholar
  6. 6.
    Mohammad Reza B, Raziyeh Gharah K and Jae-Shin L 2015 Mater. Chem. Phys. 156 254CrossRefGoogle Scholar
  7. 7.
    Kumar P, Singh S, Juneja J K, Chandra P and Raina K K 2015 Mater. Lett. 142 84CrossRefGoogle Scholar
  8. 8.
    Bindra N S, Kaur D and Kunal P 2015 Ferroelectrics 486 74CrossRefGoogle Scholar
  9. 9.
    Syed M, Rizwana Prasad G and Kumar G S 2015 Ferroelectrics 486 175CrossRefGoogle Scholar
  10. 10.
    Gonçalves Mayra D, Souza Flavio L, Elson Longo, Leite Edson R and Camargo Emerson R 2016 Ceram. Int. 42 14423CrossRefGoogle Scholar
  11. 11.
    Yongping P, Zhang L, Mouteng Y, Wanyin G and Min C 2017 Mater. Lett. 189 232CrossRefGoogle Scholar
  12. 12.
    Rani R, Kumar P, Singh S, Juneja J K and Chandra P 2017 J. Alloys Compd. 690 716CrossRefGoogle Scholar
  13. 13.
    Syed M, Rizwana Prasad G and Kumar G S 2017 Ferroelectrics 506 63CrossRefGoogle Scholar
  14. 14.
    Sinclair D C and West A R 1989 Phys. Rev. B 39 13486CrossRefGoogle Scholar
  15. 15.
    Sinclair D C and West A R 1989 J. Appl. Phys. 56 3850CrossRefGoogle Scholar
  16. 16.
    ANSI/IEEE Standards on Piezoelectricity 1987 176 51Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Institute of Aeronautical EngineeringHyderabadIndia

Personalised recommendations