Advertisement

Novel sonochemical green approach for synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract

  • Minakshi Jha
  • Shabnam Ansari
  • Navinchandra G ShimpiEmail author
Article
  • 19 Downloads

Abstract

Nanomaterial synthesized using plant extract is a viable and better alternative to chemical synthesis methods. A simple, nontoxic and inexpensive strategy, which meets the standard of green chemistry, has been introduced for the synthesis of highly crystalline and thermally stable barium sulphate (\(\hbox {BaSO}_{4})\) nanoparticles. This work reports ultrasonic-assisted green synthesis of \(\hbox {BaSO}_{4}\) nanoparticles using Azadirachta indica leaf extract at room temperature. The as-synthesized \(\hbox {BaSO}_{4}\) nanoparticles were subjected to various physiochemical characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission gun-scanning electron microscopy (FEG-SEM), thermogravimetric analysis (TGA) and energy-dispersive X-ray spectroscopy (EDX). XRD explored orthorhombic, highly crystalline and pure \(\hbox {BaSO}_{4}\) (JCPDS: 24-1035) with average crystallite size of 55.6 nm. FEG-SEM study revealed about size (\({>}80\,\hbox {nm}\)) of \(\hbox {BaSO}_{4}\) nanoparticles. Co-precipitation method was also employed to synthesize \(\hbox {BaSO}_{4}\) for comparison between biogenic and chemical methods. The size of \(\hbox {BaSO}_{4}\) nanoparticles obtained using co-precipitation method was very large with rod shape morphology. Novel sonochemical green method is preferable because of its control over particle size as well as morphology. FTIR study confirmed the formation of \(\hbox {BaSO}_{4}\) nanoparticles. High thermal tolerance and stability of \(\hbox {BaSO}_{4}\) nanoparticles was evidenced from single step weight loss in TGA. In addition, strong characteristic signals of barium, sulphur and oxygen in EDX confirmed the purity of ultrasonic-assisted green synthesized \(\hbox {BaSO}_{4}\) nanoparticles. Overall, this one pot, inexpensive and green sonochemical approach is a promising method for the synthesis of \(\hbox {BaSO}_{4}\) nanoparticles, which might be used for various commercial applications.

Graphical Abstract

Keywords

A. indica \(\hbox {BaSO}_{4}\) nanoparticles XRD TGA FEG-SEM 

Notes

Acknowledgements

One of the authors (M Jha) is thankful to the University Grants Commission (UGC), New Delhi (India) for financial support to carry out this work. Authors are also thankful to SAIF, IIT Mumbai and Microanalytical Laboratory, Department of Chemistry, University of Mumbai, Mumbai for providing characterization facilities.

Supplementary material

12034_2018_1724_MOESM1_ESM.pdf (72 kb)
Supplementary material 1 (pdf 71 KB)

References

  1. 1.
    Fang C, Hou R, Zhou K, Hua F, Cong Y, Zhang J et al 2014 J. Mater. Chem. B 9 1264CrossRefGoogle Scholar
  2. 2.
    Wang K, Wu J, Ye L and Zeng H 2003 Compos. Part A Appl. Sci. Manuf. 34 1199CrossRefGoogle Scholar
  3. 3.
    Ramaswamy V, Vimalathithan R M, Ponnusamy V and Jose M T 2013 J. Lumin. 134 791CrossRefGoogle Scholar
  4. 4.
    Bakke T, Klungsoyr J and Sanni S 2013 Mar. Environ. Res. 92 154CrossRefGoogle Scholar
  5. 5.
    Bhide M K, Seshagiri T K, Ojha S and Godbole S V 2014 Bull. Mater. Sci. 37 123CrossRefGoogle Scholar
  6. 6.
    Esen Y and Yilmazer B 2011 Bull. Mater. Sci. 34 169CrossRefGoogle Scholar
  7. 7.
    Gupta A, Singh P and Shivakumara C 2010 Solid State Commun. 150 386CrossRefGoogle Scholar
  8. 8.
    Saraya E S I and Bakr I M 2011 Am. J. Nanotechnol. 2 106Google Scholar
  9. 9.
    Bala H, Fu W, Guo Y, Zhao J, Jiyang Y, Ding X et al 2006 Colloids Surf. A Physicochem. Eng. Asp. 274 71CrossRefGoogle Scholar
  10. 10.
    Qi L, Ma J, Cheng H and Zhao Z 1996 Colloids Surf. A Physicochem. Eng. Asp. 108 117CrossRefGoogle Scholar
  11. 11.
    Shen Y, Li C, Zhu X, Xie A, Qiu L and Zhu J 2007 J. Chem. Sci. 119 319CrossRefGoogle Scholar
  12. 12.
    Wu G, Zhou H and Zhu S 2007 Mater. Lett. 61 168CrossRefGoogle Scholar
  13. 13.
    Sun Y, Zhang F, Wu D and Zhu H 2014 Particuology 14 33CrossRefGoogle Scholar
  14. 14.
    Adityawarman D, Voigt A, Veit P and Sundmacher K 2016 MATEC Web Conf. 67 02017CrossRefGoogle Scholar
  15. 15.
    Wang Q A, Wang J X, Li M, Shao L and Chen J F 2009 Chem. Eng. J. 149 473478Google Scholar
  16. 16.
    Jeevarathinam D, Gupta A K, Pitchumani B and Mohan R 2011 Chem. Eng. J. 173 607CrossRefGoogle Scholar
  17. 17.
    Chen G, Luo G S, Xu J H and Wang J D 2004 Powder Technol. 139 180CrossRefGoogle Scholar
  18. 18.
    Guo S C, Evans D G, Li D Q and Duan X 2009 AlChE J. 55 2024CrossRefGoogle Scholar
  19. 19.
    Dehkordi A M and Vafaeimanesh A 2009 Ind. Eng. Chem. Res. 48 7574CrossRefGoogle Scholar
  20. 20.
    Schwarzer H C and Peukert W 2002 Chem. Eng. Technol. 25 657CrossRefGoogle Scholar
  21. 21.
    Joseph S and Mathew B 2015 Bull. Mater. Sci. 38 659CrossRefGoogle Scholar
  22. 22.
    Sutradhar P and Saha M 2015 Bull. Mater. Sci. 38 653CrossRefGoogle Scholar
  23. 23.
    Vinmathi V and Jacob S J P 2015 Bull. Mater. Sci. 38 625CrossRefGoogle Scholar
  24. 24.
    Devi H S, Singh T D and Singh H P 2017 Bull. Mater. Sci. 40 163CrossRefGoogle Scholar
  25. 25.
    Shimpi N G, Jain S, Karmakar N, Shah A, Kothari D C and Mishra S 2016 Appl. Surf. Sci. 390 17CrossRefGoogle Scholar
  26. 26.
    Jain S, Karmakar N, Shah A, Kothari D C, Mishra S and Shimpi N G 2017 Appl. Surf. Sci. 396 1317CrossRefGoogle Scholar
  27. 27.
    Mishra S, Shimpi N G and Patil U D 2007 J. Polym. Res. 14 449CrossRefGoogle Scholar
  28. 28.
    Mishra S and Shimpi N G 2007 J. Appl. Polym. Sci. 104 2018CrossRefGoogle Scholar
  29. 29.
    Shimpi N G, Mali A D, Hansora D P and Mishra S 2015 Nanosci. Nanoeng. 3 8Google Scholar
  30. 30.
    Ghanshyam B, Sonawane S S, Kailas L W, Ajit P R, Shirish H S and Shimpi N G 2017 Res. J. Chem. Environ. 21 39Google Scholar
  31. 31.
    Shimpi N G, Verma J and Mishra S 2009 Polym. Plast. Technol. Eng. 48 297CrossRefGoogle Scholar
  32. 32.
    Shimpi N G, Shirole S, Suryawanshi Y and Mishra S 2017 Adv. Polym. Technol. 36 160CrossRefGoogle Scholar
  33. 33.
    Jha M and Shimpi N G 2018 J. Genet. Eng. Biotechnol. 16 115CrossRefGoogle Scholar
  34. 34.
    Ramaswamy V, Vimalathithan R M and Ponnusamy V 2010 Adv. Appl. Sci. Res. 1 197Google Scholar
  35. 35.
    Alder H H and Kerr P F 1965 Am. Miner. 50 132Google Scholar
  36. 36.
    Shimpi N G and Jha M 2017 IJPSR 8 5100Google Scholar
  37. 37.
    Hopwood J D and Mann S 1997 Chem. Mater. 9 1819CrossRefGoogle Scholar
  38. 38.
    Liu J K, Wu Q S, Ding Y P and Wang S Y 2004 J. Mater. Res. 19 2803CrossRefGoogle Scholar
  39. 39.
    Cafiero L M, Baffi G, Chianese A and Jachuck R J J 2002 Ind. Eng. Chem. Res. 41 5240CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MumbaiMumbaiIndia

Personalised recommendations