Advertisement

Tunable optical and dielectric properties of polymeric composite materials based on magneso-silicate

  • M M Abou-Mesalam
  • M R Abass
  • A B Ibrahim
  • A M ElsemanEmail author
  • A M Hassan
Article
  • 5 Downloads

Abstract

Magneso-silicate (MgSi) as an inorganic ion exchange material was synthesized by a precipitation technique. Then, the MgSi was impregnated into polyacrylamide acrylic acid and its composites (Poly) by condensation polymerization. To study the effect of \(\upgamma \)-radiation, the polyacrylamide acrylic acid and its MgSi samples were synthesized using \(\upgamma \)-irradiating systems at 25, 65 and 90 kGy. The variations in the radiation dose and amorphous structure were altered and confirmed by X-ray diffraction (XRD). Moreover, the absorbance and band-gap energy were enhanced by inserting MgSi into the polymeric composites (Poly). Furthermore, variations in temperature with dielectric constant, dielectric loss and conductivity of the samples at various frequencies from 100, 500, 1000, 2000 to 4000 Hz have been explained.

Keywords

Magneso-silicate polymeric composites dielectric properties radiation 

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to Central Metallurgical Research and Development Institute, Egypt for its financial support to pursue this work.

References

  1. 1.
    Majhi M, Choudhary R and Maji P 2015 Bull. Mater. Sci. 38 1195CrossRefGoogle Scholar
  2. 2.
    Karadağ E, Topaç F, Kundakci S H and Üzüm Ö B 2014 Bull. Mater. Sci. 37 1637CrossRefGoogle Scholar
  3. 3.
    Murali K R and Rao D R 1981 Thin Solid Films 86 283CrossRefGoogle Scholar
  4. 4.
    Raghuvanshi S K, Ahmad B, Siddhartha Srivastava A K, Krishna J B M and Wahab M A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 271 44CrossRefGoogle Scholar
  5. 5.
    Burland D M, Miller R D and Walsh C A 1994 Chem. Rev. 94 31CrossRefGoogle Scholar
  6. 6.
    Angiolini L, Benelli T, Giorgini L and Salatelli E 2006 Polymer 47 1875CrossRefGoogle Scholar
  7. 7.
    Rosseinsky D R and Mortimer R J 2001 Adv. Mater. 13 783CrossRefGoogle Scholar
  8. 8.
    Grote J G, Zetts J S, Nelson R L, Hopkins F K, Dalton L R, Zhang C et al 2001 Opt. Eng. 40 2464Google Scholar
  9. 9.
    Liu C-L and Chen W-C 2011 Polym. Chem. 2 2169CrossRefGoogle Scholar
  10. 10.
    Katz E and Willner I 2003 J. Am. Chem. Soc. 125 6803CrossRefGoogle Scholar
  11. 11.
    Özdemir T, Güngör A, Akbay I K, Uzun H and Babucçuoglu Y 2017 Radiat. Phys. Chem. 144 248CrossRefGoogle Scholar
  12. 12.
    Alekseev V, Baranovsky V, Vedenov A, Velichko A, Zaytzeva L, Kovalenko A et al 1991 Bull. Mater. Sci. 14 257Google Scholar
  13. 13.
    Lawton E, Bueche A and Balwit J 1953 Nature 172 76CrossRefGoogle Scholar
  14. 14.
    Ambika M R, Nagaiah N, Harish V, Lokanath N K, Sridhar M A, Renukappa N M 2017 Radiat. Phys. Chem. 130 351Google Scholar
  15. 15.
    Sharma T, Aggarwal S, Kumar S, Mittal V K, Kalsi P C and Manchanda V K 2007 J. Mater. Sci. 42 1127CrossRefGoogle Scholar
  16. 16.
    Moez A A, Aly S S and Elshaer Y H 2012 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93 203Google Scholar
  17. 17.
    Nagarale R K, Shin W and Singh P K 2010 Polym. Chem. 1 388CrossRefGoogle Scholar
  18. 18.
    Armstrong B L, Campbell A A, Gutowska A and Song L 2002 Polymer/ceramic composites (Google Patents)Google Scholar
  19. 19.
    Rao Y and Wong C 2004 J. Appl. Polym. Sci. 92 2228CrossRefGoogle Scholar
  20. 20.
    Rao Y, Ogitani S, Kohl P and Wong C 2002 J. Appl. Polym. Sci. 83 1084CrossRefGoogle Scholar
  21. 21.
    Newnham R E 1986 Ferroelectrics 68 1CrossRefGoogle Scholar
  22. 22.
    Kuo D-H, Chang C-C, Su T-Y, Wang W-K and Lin B-Y 2001 J. Eur. Ceram. Soc. 21 1171CrossRefGoogle Scholar
  23. 23.
    Qingbo Z, Liying Z and Yuzhen S 1993 Radiat. Phys. Chem. 42 73CrossRefGoogle Scholar
  24. 24.
    Hassan M F and Yusof S Z M 2014 Microsc. Res. 2 30CrossRefGoogle Scholar
  25. 25.
    Kangwansupamonkon W, Jitbunpot W and Kiatkamjornwong S 2010 Polym. Degrad. Stab. 95 1894CrossRefGoogle Scholar
  26. 26.
    Hassan A M, Zakaria E S, Ibrahim A B, Abass M R and Abou-Mesalam M M 2018 Int. J. Innov. Res. Growth 6 66Google Scholar
  27. 27.
    Manuel Stephan A and Nahm K S 2006 Polymer 47 5952CrossRefGoogle Scholar
  28. 28.
    Zhang T, Vandeperre L J and Cheeseman C R 2014 Cem. Concr. Res. 65 8CrossRefGoogle Scholar
  29. 29.
    Kato T, Kinoshita Y, Nishiyama N, Wada K, Zhou C and Irifune T 2014 Phys. Earth Planet. Inter. 232 26CrossRefGoogle Scholar
  30. 30.
    Abdel-Galil E, El-Deen G S, El-Aryan Y and Khalil M 2016 Russ. J. Appl. Chem. 89 467CrossRefGoogle Scholar
  31. 31.
    Li D, Wang M, Yang C, Wang J and Ren G 2012 Chem. Pharm. Bull. 60 995CrossRefGoogle Scholar
  32. 32.
    Deng Y, Dixon J B, White G N, Loeppert R H and Juo A S 2006 Colloids Surf. A Physicochem. Eng. Asp. 281 82CrossRefGoogle Scholar
  33. 33.
    Fournier J A, Johnson C J, Wolke C T, Weddle G H, Wolk A B and Johnson M A 2014 Science 344 1009CrossRefGoogle Scholar
  34. 34.
    Rashidzadeh A, Olad A, Salari D and Reyhanitabar A 2014 J. Polym. Res. 21 344CrossRefGoogle Scholar
  35. 35.
    Xiao-Hong L, Hong-Ling C, Rui-Zhou Z and Xian-Zhou Z 2015 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137 321Google Scholar
  36. 36.
    Rashad M M, Elseman A M and Hassan A M 2016 Optik-Int. J. Light Electron Opt. 127 9775CrossRefGoogle Scholar
  37. 37.
    Luo B, Wang X, Wang Y and Li L 2014 J. Mater. Chem. A 2 510CrossRefGoogle Scholar
  38. 38.
    Shalabney A, George J, Hutchison J, Pupillo G, Genet C and Ebbesen T W 2015 Nat. Commun. 6 5981CrossRefGoogle Scholar
  39. 39.
    Abou-Mesalam M M, Abass M R, Abdel-Wahab M A, Zakaria E S, Hassan A M and Khalil H F 2016 Desalination Water Treat. 57 25757CrossRefGoogle Scholar
  40. 40.
    Madejová J 2003 Vib. Spectrosc. 31 1CrossRefGoogle Scholar
  41. 41.
    Anwar A, Elfiky D, Ramadan A M and Hassan G M 2017 Radiat. Phys. Chem. 134 14CrossRefGoogle Scholar
  42. 42.
    Maryanski M, Zastavker Y and Gore J 1996 Phys. Med. Biol. 41 2705CrossRefGoogle Scholar
  43. 43.
    Elseman A, Shalan A, Rashad M and Hassan A 2017 Mater. Sci. Semicond. Process. 66 176CrossRefGoogle Scholar
  44. 44.
    Elseman A M, Shalan A E, Rashad M M, Hassan A M, Ibrahim N M and Nassar A M 2017 J. Phys. Org. Chem. 30 e3639CrossRefGoogle Scholar
  45. 45.
    Rashad M, Hassan A, Nassar A, Ibrahim N and Mourtada A 2014 Appl. Phys. A 117 877CrossRefGoogle Scholar
  46. 46.
    Thayer G D 1974 Radio Sci. 9 803CrossRefGoogle Scholar
  47. 47.
    Chia L H L, Chua P H, Hon Y S and Lee E 1986 Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 27 207Google Scholar
  48. 48.
    Jonscher A K 1977 Nature 267 673CrossRefGoogle Scholar
  49. 49.
    Aras L and Baysal B M 1984 J. Polym. Sci. Part B Polym. Phys. 22 1453Google Scholar
  50. 50.
    Andreuccetti D, Bini M, Ignesti A, Olmi R, Rubino N and Vanni R A 1988 IEEE Trans. Biomed. Eng. 35 275CrossRefGoogle Scholar
  51. 51.
    Pant H, Patra M, Negi S, Bhatia A, Vadera S and Kumar N 2006 Bull. Mater. Sci. 29 379CrossRefGoogle Scholar
  52. 52.
    Song H-S, Yang C and Liu D-B 2012 J. Funct. Mater. 9 25Google Scholar
  53. 53.
    Zikry A 2008 Int. J. Polym. Mater. 57 383CrossRefGoogle Scholar
  54. 54.
    Manouras T and Vamvakaki M 2017 Polym. Chem. 8 74CrossRefGoogle Scholar
  55. 55.
    Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57Google Scholar
  56. 56.
    Nassar A M, Abo Zeid E F, Elseman A M and Alotaibi N F 2018 New J. Chem. 42 1387CrossRefGoogle Scholar
  57. 57.
    Rao V and Rao B S 1991 Acta Polym. 42 379CrossRefGoogle Scholar
  58. 58.
    Blythe A R and Bloor D 2005 Electrical properties of polymers (United Kingdom: University Press)Google Scholar
  59. 59.
    Maji P, Pande P and Choudhary R 2015 Bull. Mater. Sci. 38 417CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Atomic Energy AuthorityHot Labs CentreCairoEgypt
  2. 2.Advanced Materials Division, Electronic and Magnetic Materials DepartmentCentral Metallurgical Research and Development Institute (CMRDI)HelwanEgypt
  3. 3.State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijingPeople’s Republic of China
  4. 4.Chemistry Department, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt

Personalised recommendations