Tunable optical and dielectric properties of polymeric composite materials based on magneso-silicate
- 5 Downloads
Abstract
Magneso-silicate (MgSi) as an inorganic ion exchange material was synthesized by a precipitation technique. Then, the MgSi was impregnated into polyacrylamide acrylic acid and its composites (Poly) by condensation polymerization. To study the effect of \(\upgamma \)-radiation, the polyacrylamide acrylic acid and its MgSi samples were synthesized using \(\upgamma \)-irradiating systems at 25, 65 and 90 kGy. The variations in the radiation dose and amorphous structure were altered and confirmed by X-ray diffraction (XRD). Moreover, the absorbance and band-gap energy were enhanced by inserting MgSi into the polymeric composites (Poly). Furthermore, variations in temperature with dielectric constant, dielectric loss and conductivity of the samples at various frequencies from 100, 500, 1000, 2000 to 4000 Hz have been explained.
Keywords
Magneso-silicate polymeric composites dielectric properties radiationNotes
Acknowledgements
The authors would like to extend their sincere appreciation to Central Metallurgical Research and Development Institute, Egypt for its financial support to pursue this work.
References
- 1.Majhi M, Choudhary R and Maji P 2015 Bull. Mater. Sci. 38 1195CrossRefGoogle Scholar
- 2.Karadağ E, Topaç F, Kundakci S H and Üzüm Ö B 2014 Bull. Mater. Sci. 37 1637CrossRefGoogle Scholar
- 3.Murali K R and Rao D R 1981 Thin Solid Films 86 283CrossRefGoogle Scholar
- 4.Raghuvanshi S K, Ahmad B, Siddhartha Srivastava A K, Krishna J B M and Wahab M A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 271 44CrossRefGoogle Scholar
- 5.Burland D M, Miller R D and Walsh C A 1994 Chem. Rev. 94 31CrossRefGoogle Scholar
- 6.Angiolini L, Benelli T, Giorgini L and Salatelli E 2006 Polymer 47 1875CrossRefGoogle Scholar
- 7.Rosseinsky D R and Mortimer R J 2001 Adv. Mater. 13 783CrossRefGoogle Scholar
- 8.Grote J G, Zetts J S, Nelson R L, Hopkins F K, Dalton L R, Zhang C et al 2001 Opt. Eng. 40 2464Google Scholar
- 9.Liu C-L and Chen W-C 2011 Polym. Chem. 2 2169CrossRefGoogle Scholar
- 10.Katz E and Willner I 2003 J. Am. Chem. Soc. 125 6803CrossRefGoogle Scholar
- 11.Özdemir T, Güngör A, Akbay I K, Uzun H and Babucçuoglu Y 2017 Radiat. Phys. Chem. 144 248CrossRefGoogle Scholar
- 12.Alekseev V, Baranovsky V, Vedenov A, Velichko A, Zaytzeva L, Kovalenko A et al 1991 Bull. Mater. Sci. 14 257Google Scholar
- 13.Lawton E, Bueche A and Balwit J 1953 Nature 172 76CrossRefGoogle Scholar
- 14.Ambika M R, Nagaiah N, Harish V, Lokanath N K, Sridhar M A, Renukappa N M 2017 Radiat. Phys. Chem. 130 351Google Scholar
- 15.Sharma T, Aggarwal S, Kumar S, Mittal V K, Kalsi P C and Manchanda V K 2007 J. Mater. Sci. 42 1127CrossRefGoogle Scholar
- 16.Moez A A, Aly S S and Elshaer Y H 2012 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93 203Google Scholar
- 17.Nagarale R K, Shin W and Singh P K 2010 Polym. Chem. 1 388CrossRefGoogle Scholar
- 18.Armstrong B L, Campbell A A, Gutowska A and Song L 2002 Polymer/ceramic composites (Google Patents)Google Scholar
- 19.Rao Y and Wong C 2004 J. Appl. Polym. Sci. 92 2228CrossRefGoogle Scholar
- 20.Rao Y, Ogitani S, Kohl P and Wong C 2002 J. Appl. Polym. Sci. 83 1084CrossRefGoogle Scholar
- 21.Newnham R E 1986 Ferroelectrics 68 1CrossRefGoogle Scholar
- 22.Kuo D-H, Chang C-C, Su T-Y, Wang W-K and Lin B-Y 2001 J. Eur. Ceram. Soc. 21 1171CrossRefGoogle Scholar
- 23.Qingbo Z, Liying Z and Yuzhen S 1993 Radiat. Phys. Chem. 42 73CrossRefGoogle Scholar
- 24.Hassan M F and Yusof S Z M 2014 Microsc. Res. 2 30CrossRefGoogle Scholar
- 25.Kangwansupamonkon W, Jitbunpot W and Kiatkamjornwong S 2010 Polym. Degrad. Stab. 95 1894CrossRefGoogle Scholar
- 26.Hassan A M, Zakaria E S, Ibrahim A B, Abass M R and Abou-Mesalam M M 2018 Int. J. Innov. Res. Growth 6 66Google Scholar
- 27.Manuel Stephan A and Nahm K S 2006 Polymer 47 5952CrossRefGoogle Scholar
- 28.Zhang T, Vandeperre L J and Cheeseman C R 2014 Cem. Concr. Res. 65 8CrossRefGoogle Scholar
- 29.Kato T, Kinoshita Y, Nishiyama N, Wada K, Zhou C and Irifune T 2014 Phys. Earth Planet. Inter. 232 26CrossRefGoogle Scholar
- 30.Abdel-Galil E, El-Deen G S, El-Aryan Y and Khalil M 2016 Russ. J. Appl. Chem. 89 467CrossRefGoogle Scholar
- 31.Li D, Wang M, Yang C, Wang J and Ren G 2012 Chem. Pharm. Bull. 60 995CrossRefGoogle Scholar
- 32.Deng Y, Dixon J B, White G N, Loeppert R H and Juo A S 2006 Colloids Surf. A Physicochem. Eng. Asp. 281 82CrossRefGoogle Scholar
- 33.Fournier J A, Johnson C J, Wolke C T, Weddle G H, Wolk A B and Johnson M A 2014 Science 344 1009CrossRefGoogle Scholar
- 34.Rashidzadeh A, Olad A, Salari D and Reyhanitabar A 2014 J. Polym. Res. 21 344CrossRefGoogle Scholar
- 35.Xiao-Hong L, Hong-Ling C, Rui-Zhou Z and Xian-Zhou Z 2015 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137 321Google Scholar
- 36.Rashad M M, Elseman A M and Hassan A M 2016 Optik-Int. J. Light Electron Opt. 127 9775CrossRefGoogle Scholar
- 37.Luo B, Wang X, Wang Y and Li L 2014 J. Mater. Chem. A 2 510CrossRefGoogle Scholar
- 38.Shalabney A, George J, Hutchison J, Pupillo G, Genet C and Ebbesen T W 2015 Nat. Commun. 6 5981CrossRefGoogle Scholar
- 39.Abou-Mesalam M M, Abass M R, Abdel-Wahab M A, Zakaria E S, Hassan A M and Khalil H F 2016 Desalination Water Treat. 57 25757CrossRefGoogle Scholar
- 40.Madejová J 2003 Vib. Spectrosc. 31 1CrossRefGoogle Scholar
- 41.Anwar A, Elfiky D, Ramadan A M and Hassan G M 2017 Radiat. Phys. Chem. 134 14CrossRefGoogle Scholar
- 42.Maryanski M, Zastavker Y and Gore J 1996 Phys. Med. Biol. 41 2705CrossRefGoogle Scholar
- 43.Elseman A, Shalan A, Rashad M and Hassan A 2017 Mater. Sci. Semicond. Process. 66 176CrossRefGoogle Scholar
- 44.Elseman A M, Shalan A E, Rashad M M, Hassan A M, Ibrahim N M and Nassar A M 2017 J. Phys. Org. Chem. 30 e3639CrossRefGoogle Scholar
- 45.Rashad M, Hassan A, Nassar A, Ibrahim N and Mourtada A 2014 Appl. Phys. A 117 877CrossRefGoogle Scholar
- 46.Thayer G D 1974 Radio Sci. 9 803CrossRefGoogle Scholar
- 47.Chia L H L, Chua P H, Hon Y S and Lee E 1986 Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 27 207Google Scholar
- 48.Jonscher A K 1977 Nature 267 673CrossRefGoogle Scholar
- 49.Aras L and Baysal B M 1984 J. Polym. Sci. Part B Polym. Phys. 22 1453Google Scholar
- 50.Andreuccetti D, Bini M, Ignesti A, Olmi R, Rubino N and Vanni R A 1988 IEEE Trans. Biomed. Eng. 35 275CrossRefGoogle Scholar
- 51.Pant H, Patra M, Negi S, Bhatia A, Vadera S and Kumar N 2006 Bull. Mater. Sci. 29 379CrossRefGoogle Scholar
- 52.Song H-S, Yang C and Liu D-B 2012 J. Funct. Mater. 9 25Google Scholar
- 53.Zikry A 2008 Int. J. Polym. Mater. 57 383CrossRefGoogle Scholar
- 54.Manouras T and Vamvakaki M 2017 Polym. Chem. 8 74CrossRefGoogle Scholar
- 55.Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57Google Scholar
- 56.Nassar A M, Abo Zeid E F, Elseman A M and Alotaibi N F 2018 New J. Chem. 42 1387CrossRefGoogle Scholar
- 57.Rao V and Rao B S 1991 Acta Polym. 42 379CrossRefGoogle Scholar
- 58.Blythe A R and Bloor D 2005 Electrical properties of polymers (United Kingdom: University Press)Google Scholar
- 59.Maji P, Pande P and Choudhary R 2015 Bull. Mater. Sci. 38 417CrossRefGoogle Scholar