Manifestation of exo-cyclic aromaticity in triangular heterocyclic \(\hbox {B}_{2}\hbox {F}_{2}\)X systems (X \(=\) O, S, Se, NH)

  • Manoswita Homray
  • Satadal Paul
  • Anirban MisraEmail author


Aromaticity is an important concept in chemistry which extends over a wide range of molecular systems and imparts unique features to the molecules possessing it. In the present work, novel heteroatomic molecular systems are proposed which demonstrate non-conventional aromaticity where the molecules accomplish the aromatic sextet and hence stabilization through the conjugation of \(\uppi \)-electrons from exo-cyclic substituents. A considerable \(\upsigma \)-aromaticity is also observed which does not involve the exo-cyclic atoms. At first, the stability of these molecular systems is theoretically ascertained through various density functional theory and ab-initio calculations along with the energy decomposition analysis, T1 diagnostic run, estimation of ring strain energy and highest occupied molecular orbital–lowest unoccupied molecular orbital gap which indicate towards the viability of these molecular systems. Then, a detailed study of aromaticity with the aid of different computational probes such as nucleus-independent chemical shift (NICS), dissected canonical molecular orbital-NICS analysis, multi-centre bond index (MCI), adaptive natural density partitioning and theoretical tools such as aromatic stabilization energy based on a fully ab-initio approach are performed which establish unique exo-cyclic aromaticity in these systems.


Aromaticity exo-cyclic nucleus-independent chemical shift multi-centre bond index aromatic stabilization energy 



The financial support from CSIR, India, is thankfully acknowledged.

Supplementary material

12034_2018_1718_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (pdf 1164 KB)


  1. 1.
    Faraday M 1825 Phil. Trans. R. Soc. Lond. 115 440CrossRefGoogle Scholar
  2. 2.
    Kekulé A 1865 Bull. Soc. Chim. Paris 3 98Google Scholar
  3. 3.
    Kekulé A 1866 Ann. Chem. Pharm. 137 129CrossRefGoogle Scholar
  4. 4.
    Garratt P J 1997 Aromaticity (New York: John Wiley & Sons)Google Scholar
  5. 5.
    Minkin V I, Glukhotsev M N and Simkin B Y 1994 Aromaticity and antiaromaticity: electronic and structural aspects (New York: John Wiley & Sons Inc.)Google Scholar
  6. 6.
    Bickelhaupt F and de Wolf W H 1988 Recl. Trav. Chim. Pays-Bas 107 459CrossRefGoogle Scholar
  7. 7.
    Kraakman P A, Valk J M, Niederländer H A G, Brouwer D B E, Bickelhaupt F M, de Wolf W H et al 1990 J. Am. Chem. Soc. 112 6638CrossRefGoogle Scholar
  8. 8.
    Schleyer P V R and Jiao H 1996 J. Pure Appl. Chem. 68 209CrossRefGoogle Scholar
  9. 9.
    Schleyer P V R, Jiao H, Hommes N J R V E, Malkin V G and Malkina O L 1997 J. Am. Chem. Soc. 119 12669Google Scholar
  10. 10.
    Poranne G P and Stranger A 1994 Magnetic and structural aspects (New York: Wiley)Google Scholar
  11. 11.
    Homray M, Misra A and Chattaraj P K 2017 Curr. Org. Chem. 21 2699Google Scholar
  12. 12.
    Katritzky A R 2004 Chem. Rev. 104 2125CrossRefGoogle Scholar
  13. 13.
    Aihara J I 1982 J. Pure Appl. Chem. 54 1115CrossRefGoogle Scholar
  14. 14.
    Graovac A, Gutman L and Trinajstic 1977 Topological approach to the chemistry of conjugated molecules (Berlin: Springer)Google Scholar
  15. 15.
    Nyulaszi L 2001Chem. Rev. 101 1229CrossRefGoogle Scholar
  16. 16.
    Minkin V I and Minyaev R M 2001Chem. Rev. 101 1247CrossRefGoogle Scholar
  17. 17.
    Katritzky A R, Jug K and Oniciu D C 2001 Chem. Rev. 101 1421CrossRefGoogle Scholar
  18. 18.
    Li X, Kuznetsov A, Zhang H, Boldyrev A I and Wang L 2001 Science 291 859CrossRefGoogle Scholar
  19. 19.
    Kuznetsov A E, Birch K A, Boldyrev A I, Li X, Zhai H and Wang L 2003 Science 300 622CrossRefGoogle Scholar
  20. 20.
    Boldyrev A I and Wang L 2005 Chem. Rev. 105 3716CrossRefGoogle Scholar
  21. 21.
    Paul S and Misra A 2011 Inorg. Chem. 50 3234CrossRefGoogle Scholar
  22. 22.
    Chattaraj P K, Roy D R and Duley S 2008 Chem. Phys. Lett. 460 382CrossRefGoogle Scholar
  23. 23.
    Huckel E 1931 Z. Phys. 70 204CrossRefGoogle Scholar
  24. 24.
    Hehre W J, Radom L, Schleyer P V R and Pople J A 1986 Ab initio molecular orbital theory (New York: Wiley)Google Scholar
  25. 25.
    Xie Y, Schaefer III H F and Thrasher J S 1991 J. Mol. Struct. Theochem. 234 247CrossRefGoogle Scholar
  26. 26.
    Shaik S, Shurki A, Danovich D and Hiberty P C 1997 J. Mol. Struct. Theochem. 39 155CrossRefGoogle Scholar
  27. 27.
    Krygowski T M and Cyraski M K 2001 Chem. Rev. 101 1385CrossRefGoogle Scholar
  28. 28.
    Poater J, Duran M, Solà M and Silvi B 2005 Chem. Rev. 105 3911CrossRefGoogle Scholar
  29. 29.
    Cyraski M K 2005 Chem. Rev. 105 3773CrossRefGoogle Scholar
  30. 30.
    Matito E, Duran M and Solà M 2005 J. Chem. Phys. 122 014109CrossRefGoogle Scholar
  31. 31.
    Bultinck P, Ponec R and Van Damme S 2005 J. Phys. Org. Chem. 18 706CrossRefGoogle Scholar
  32. 32.
    Feixas F, Matito E, Poater J and Solà M 2008 J. Comput. Chem. 29 1543CrossRefGoogle Scholar
  33. 33.
    Roy D R, Bultinck P, Subramanium V and Chattaraj P K 2008 J. Mol. Struct. 854 35CrossRefGoogle Scholar
  34. 34.
    Feixas F, Matito E, Poater J and Solà M 2015 Chem. Soc. Rev. 44 6434CrossRefGoogle Scholar
  35. 35.
    Misra A, Klein D J and Morikawa T 2009 J. Phys. Chem. A 113 1151CrossRefGoogle Scholar
  36. 36.
    Clar E 1970 The aromatic sextet (New York: Wiley & Sons)Google Scholar
  37. 37.
    Misra A, Schmalz T G and Klein D J 2009 J. Chem. Inf. Model. 49 2670CrossRefGoogle Scholar
  38. 38.
    Bhattacharya D, Panda A, Misra A and Klein D J 2014 J. Phys. Chem. A 118 4325CrossRefGoogle Scholar
  39. 39.
    Gund P 1972 J. Chem. Educ. 49 100CrossRefGoogle Scholar
  40. 40.
    Goswami T, Homray M, Paul S, Bhattacharya D and Misra A 2017 Phys. Chem. Chem. Phys. 19 11744CrossRefGoogle Scholar
  41. 41.
    Gutowsky H S and McCall D W 1953 J. Phys. Chem. 21 279CrossRefGoogle Scholar
  42. 42.
    Onak T P, Landesman H, Williams R E and Shapiro I 1959 Paper presented to the Division of Inorganic Chemistry, 135th National Meeting of the American Chemical Society, Boston, Mass., 1959Google Scholar
  43. 43.
    Cotton F A and Wilkinson G 1966 Advanced inorganic chemistry (London: Interscience) p 256Google Scholar
  44. 44.
    Olah G A, Mo Y K and Halpern Y 1972 J. Am. Chem. Soc. 94 3551CrossRefGoogle Scholar
  45. 45.
    Ziegler T and Rauk A 1977 Theor. Chim. Acta 46 1CrossRefGoogle Scholar
  46. 46.
    Bader R F W 1990 Atoms in molecules: a quantum theory (Oxford, UK: Oxford University Press)Google Scholar
  47. 47.
    Schleyer P V R, Maerke C, Dransfeld A, Jiao H and Hommes N J R V E 1996 J. Am. Chem. Soc. 118 6317CrossRefGoogle Scholar
  48. 48.
    Heine T, Schleyer P V R, Corminboeuf C, Seifert G, Reviakine R and Weber J 2003 J. Phys. Chem. A 107 6470CrossRefGoogle Scholar
  49. 49.
    Zubarev D Y and Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207CrossRefGoogle Scholar
  50. 50.
    Paul S, Goswami T and Misra A 2015 AIP Adv. 5 107211CrossRefGoogle Scholar
  51. 51.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision B.01 (Wallingford, CT: Gaussian Inc.)Google Scholar
  52. 52.
    Amsterdam Density Functional (Theoretical Chemistry, Vrije Universitiet, Amsterdam, The Netherlands,
  53. 53.
    AIMAll (version 17.01.25), Todd A K 2017 TK Gristmill Software, Overland Park KS, USAGoogle Scholar
  54. 54.
    Lu T and Chen F 2012 J. Comput. Chem. 33 580CrossRefGoogle Scholar
  55. 55.
    DFT Code, OPENMX, is available at under the GNU General Public License
  56. 56.
    Pinter B, Fievez T, Bickelhaupt F M, Geerlings P and De Proft F 2012 Phys. Chem. Chem. Phys. 14 9846CrossRefGoogle Scholar
  57. 57.
    Lee J T and Taylor P 1989 Int. J. Quantum Chem. 36 199CrossRefGoogle Scholar
  58. 58.
    Bauzá A, Quiñonero D, Deyà P M and Frontera A 2012 Chem. Phys. Lett. 536 165CrossRefGoogle Scholar
  59. 59.
    Cox J D and Pilcher G 1970 Thermochemistry of organic and organometallic compounds (London: Academic)Google Scholar
  60. 60.
    Benson S W 1976 Thermochemical kinetics (New York: Wiley)Google Scholar
  61. 61.
    Inagaki S, Ishitani Y and Kakefu T 1994 J. Am. Chem. Soc. 116 13CrossRefGoogle Scholar
  62. 62.
    Dewar M J S 1984 J. Am. Chem. Soc. 106 669CrossRefGoogle Scholar
  63. 63.
    Aihara J 1999 J. Phys. Chem. A 103 7487CrossRefGoogle Scholar
  64. 64.
    Aihara J 1999 Theor. Chem. Acc. 102 134CrossRefGoogle Scholar
  65. 65.
    Aihara J 1999 Phys. Chem. Chem. Phys. 1 227CrossRefGoogle Scholar
  66. 66.
    Parr R G and Zhou Z 1993 Acc. Chem. Res. 26 256CrossRefGoogle Scholar
  67. 67.
    Liu X, Schmalz T G and Klien D J 1992 Chem. Phys. Lett. 188 550CrossRefGoogle Scholar
  68. 68.
    Haddon R C and Fukunaga T 1980 Tetrahedron Lett. 21 1191CrossRefGoogle Scholar
  69. 69.
    Pearson R G 1973 Hard and soft acids and bases (Stroudsburg, PA: Dowden, Hutchinson and Ross)Google Scholar
  70. 70.
    Manolopoulos D E, May J C and Down S E 1991 Chem. Phys. Lett. 181 105CrossRefGoogle Scholar
  71. 71.
    Hoffmann R, Schleyer P V R and Schaefer H F 2008 Angew. Chem. Int. Ed. 47 7164CrossRefGoogle Scholar
  72. 72.
    Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1989 J. Am. Chem. Soc. 111 7CrossRefGoogle Scholar
  73. 73.
    Schleyer P V R, Manoharan M, Jiao H and Stahl F 2001 Org. Lett. 3 3643CrossRefGoogle Scholar
  74. 74.
    Chen Z, Wannere C S, Corminboeuf C, Puchta R and Schleyer P V R 2005 Chem. Rev. 105 3842CrossRefGoogle Scholar
  75. 75.
    London F 1937 J. Phys. Radium 8 397CrossRefGoogle Scholar
  76. 76.
    Cheeseman J R, Trucks G W, Keith T A and Frisch M J 1996 J. Chem. Phys. 104 5497CrossRefGoogle Scholar
  77. 77.
    Schreckenbach G and Ziegler T 1995 J. Phys. Chem. 99 606CrossRefGoogle Scholar
  78. 78.
    Schreckenbach G and Ziegler T 1998 Theor. Chem. Acc. 99 71CrossRefGoogle Scholar
  79. 79.
    Simkin B Y, Minkin V I and Glukhotsev M N 1993 Adv. Heterocycl. Chem. 56 304Google Scholar
  80. 80.
    Foster J P and Weinhold F 1980 J. Am. Chem. Soc. 102 7211CrossRefGoogle Scholar
  81. 81.
    Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899CrossRefGoogle Scholar
  82. 82.
    Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1984 J. Am. Chem. Soc. 111 7CrossRefGoogle Scholar
  83. 83.
    Radhakrishnan S, Anathakrishnan S J and Somanathan N 2011 Bull. Mater. Sci. 34 713CrossRefGoogle Scholar
  84. 84.
    Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North BengalDarjeelingIndia

Personalised recommendations