Development of microparticles from wheat glutenins by electrospray and potential application as controlled-release fertilizers

  • D-D Castro-Enríquez
  • M-M Castillo-Ortega
  • J Romero-García
  • D-E Rodríguez-Félix
  • R-F Dórame-Miranda
  • W Torres-Arreola
  • J-M Vargas-López
  • S-E Burruel-Ibarra
  • F Rodríguez-FélixEmail author


Development of microparticles based on natural polymers has been of interest for researchers due to their applications, such as release systems. Currently, one of the problems presented by agriculture worldwide is the loss of fertilizers, i.e., urea, causing environmental pollution and high costs. The aim of this work was to develop microparticles of wheat glutenins by means of electrospray technique, with potential application as a urea controlled-release system in agricultural soils. The microparticles of wheat glutenins were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). In addition, a release kinetic test was performed to evaluate the possible behaviour of wheat-glutenin microparticles in agricultural soils with pH 4, 7 and 10, using buffers as the release medium. TGA indicated that microparticle stability was \({>}100{^{\circ }}\hbox {C}\), while FT-IR demonstrated the existence of physical interactions between urea and wheat glutenins. The kinetic tests showed the possible behaviour of the controlled-release fertilizer at pH 4, 7 and 10; rapid release at acidic pH and a decrease in release time at basic pH. With these results, we can conclude that the urea-charged wheat-glutenin microparticles can function as a controlled-release fertilizer in agricultural soils.


Microparticles glutenins electrospray controlled-release fertilizer 



We acknowledge the University of Sonora and appreciate the economic support of CONACyT through the Basic Science Project number 178436.


  1. 1.
    Hernández P, Villalobos R and Chiralt A 2004 Food Hydrocolloids 18 403CrossRefGoogle Scholar
  2. 2.
    Robles M, Rodríguez F, Márquez E, Barrera A, Aguilar J and Del Toro C 2014 Biotecnia 16 44CrossRefGoogle Scholar
  3. 3.
    Reddy N and Yang Y 2011 Trends Biotechnol29 490CrossRefGoogle Scholar
  4. 4.
    Kayserilioğlu B, Bakir U, Yilmaz L and Akkaş N 2003 Bioresour. Technol. 87 239CrossRefGoogle Scholar
  5. 5.
    Lagrain B, Rombouts I, Delcour J and Koehler P 2014 J. Cereal Sci. 6 131CrossRefGoogle Scholar
  6. 6.
    Díaz P, Dalla M, Vázquez D and Castro M 2006 Agric. Técnica 66 360Google Scholar
  7. 7.
    Song Y and Zheng Q 2008 J. Cereal Sci. 48 77CrossRefGoogle Scholar
  8. 8.
    Chen L, Reddy N, Wu X and Yang Y 2012 Ind. Crops Prod. 35 70CrossRefGoogle Scholar
  9. 9.
    Xu H, Cai S, Sellers A and Yang Y 2014 J. Biotechnol. 184 179CrossRefGoogle Scholar
  10. 10.
    Reddy N, Shi Z, Xu H and Yang Y 2015 J. Biomed. Mater. Res. A 103 1653CrossRefGoogle Scholar
  11. 11.
    Davoodi P, Feng F, Xu Q, Yan W, Tong Y, Srinivasan M et al 2015 J. Control. Release 205 70CrossRefGoogle Scholar
  12. 12.
    Andreani L, Cercená R, Ramos B and Soldi V 2009 Mater. Sci. Eng. C 29 524CrossRefGoogle Scholar
  13. 13.
    Lee Y, Mei F, Bai M, Zhao S and Chen D 2010 J. Control. Release 145 58CrossRefGoogle Scholar
  14. 14.
    Jaworek A and Sobczy A 2008 J. Electrostat. 66 197CrossRefGoogle Scholar
  15. 15.
    Gómez J, Balaguer M, Gavara R and Hernandez P 2012 Food Hydrocolloids 28 82CrossRefGoogle Scholar
  16. 16.
    Xu Q, Qin H, Yin Z, Hua J, Pack D and Wang C 2013 Chem. Eng. Sci. 104 330CrossRefGoogle Scholar
  17. 17.
    Zarchi A, Abbasi S, Faramarzi M, Gilani K, Ghazi M and Amani A 2015 Int. J. Biol. Macromol. 72 764CrossRefGoogle Scholar
  18. 18.
    Jaworek A 2007 Powder Technol176 18CrossRefGoogle Scholar
  19. 19.
    Lagrain B, Goderis B, Brijs K and Delcour J 2010 Biomacromolecules 11 533CrossRefGoogle Scholar
  20. 20.
    Castro D, Rodríguez F, Ramírez B, Torres P, Castillo M, Rodríguez D et al 2012 Materials 5 2903CrossRefGoogle Scholar
  21. 21.
    Chime S, Onunkwo G and Onyish I 2013 Res. J. Pharm. Biol. Chem. Sci. 4 97Google Scholar
  22. 22.
    Gianibelli M and Solomon R 2003 J. Cereal Sci. 37 253CrossRefGoogle Scholar
  23. 23.
    Chakraborty S, Liao I, Adler A and Leong K 2009 Adv. Drug Deliv. Rev. 61 1043CrossRefGoogle Scholar
  24. 24.
    Triantafillopoulos N 1998 Measurement of fluid rheology and interpretation of rheograms manual (Michigan, USA: Kaltec Scientific Inc.) 2nd edn. p 21Google Scholar
  25. 25.
    Dong J, Asandei A and Parnas R 2010 Polymer 51 3164CrossRefGoogle Scholar
  26. 26.
    Chhabra R P 2010 Non-Newtonian fluids: an introduction In Rheology of complex fluids (New York, NY: Springer) p 3Google Scholar
  27. 27.
    El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A et al 2015 Carbohydr. Polym129 156CrossRefGoogle Scholar
  28. 28.
    Turro N, Lei X, Ananthapadmanabhan K and Aronson M 1995 Langmuir 11 2525CrossRefGoogle Scholar
  29. 29.
    Podaralla S and Perumal O 2012 AAPS PharmSciTech 13 919CrossRefGoogle Scholar
  30. 30.
    Prabhakaran M, Zamani M, Felice B and Ramakrishna S 2015 Mater. Sci. Eng. C 56 66Google Scholar
  31. 31.
    Wu W, Gaucher C, Fries I, Hu X, Maincent P and Sapin-Minet A 2015 Int. J. Pharm495 354CrossRefGoogle Scholar
  32. 32.
    Xu Y and Hanna M 2006 Int. J. Pharm320 30CrossRefGoogle Scholar
  33. 33.
    Li W, Dobraszczyk B, Dias A and Gil A 2006 Cereal Chem. 83 407CrossRefGoogle Scholar
  34. 34.
    Barth A 2007 (BBA)-Bioenerg9 1073Google Scholar
  35. 35.
    Kong J and Yu S 2007 Biochim. Biophys. Sin. 39 549CrossRefGoogle Scholar
  36. 36.
    Balaguer M, Borne M, Chalier P, Gontard N, Morel M, Peyron S et al 2013 Biomacromolecules 14 1493CrossRefGoogle Scholar
  37. 37.
    Perczel A, Gáspári Z and Csizmadia I 2005 J. Comput. Chem. 26 1155CrossRefGoogle Scholar
  38. 38.
    Wang P, Xu L, Nikoo M, Ocen D, Wu F, Yang N et al 2014 Food Hydrocolloids 35 238CrossRefGoogle Scholar
  39. 39.
    Hazarika J and Kumar A 2013 Synth. Met. 175 155CrossRefGoogle Scholar
  40. 40.
    Jiang D, Yao Q, McKinney M and Wilkie C 1999 Polym. Degrad. Stab. 63 423CrossRefGoogle Scholar
  41. 41.
    Gulfam M, Kim J, Lee J, Ku B, Chung B and Chung B 2012 Langmuir 28 8216CrossRefGoogle Scholar
  42. 42.
    Chen L, Remondetto G and Subirade M 2006 Trends Food Sci. Technol. 17 272CrossRefGoogle Scholar
  43. 43.
    Rodriguez D, Perez C, Castillo M, Perez M, Romero J, Ledezma A et al 2012 Polym. Bull68 197CrossRefGoogle Scholar
  44. 44.
    Farooq U, Khan M, Athar M and Kozinski J 2011 Chem. Eng. J. 171 400CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • D-D Castro-Enríquez
    • 1
  • M-M Castillo-Ortega
    • 1
  • J Romero-García
    • 2
  • D-E Rodríguez-Félix
    • 1
  • R-F Dórame-Miranda
    • 1
  • W Torres-Arreola
    • 3
  • J-M Vargas-López
    • 3
  • S-E Burruel-Ibarra
    • 1
  • F Rodríguez-Félix
    • 3
    Email author
  1. 1.Departamento de Investigación en Polímeros y MaterialesUniversidad de Sonora, Encinas y RosalesHermosilloMexico
  2. 2.Centro de Investigación en Química AplicadaSaltilloMexico
  3. 3.Departamento de Investigación y Posgrado en AlimentosUniversidad de Sonora, Encinas y RosalesHermosilloMexico

Personalised recommendations