Advertisement

Active area cell efficiency (19%) monocrystalline silicon solar cell fabrication using low-cost processing with small footprint laboratory tools

  • Prabir K BasuEmail author
  • Sandeep Kumbhar
  • K P Sreejith
  • Tarun S Yadav
  • Anil Kottantharayil
  • B M Arora
  • K L Narasimhan
  • Ashok K Sharma
Article

Abstract

A high efficiency (>\(18\%\)) industrial large area crystalline silicon wafer solar cell fabrication process generally requires industrial equipment with large footprint, high capital and running costs. Stricter processing window, continuous monitoring and automated functioning are the reasons for it. However, for any conventional laboratory (lab) it is always difficult to manage these requirements with limited available lab space or insufficient fund and other related resources. In this work, we report a novel way to fabricate high efficiency full area aluminium back surface field monocrystalline silicon wafer solar cells in our lab using low-cost processing with small-footprint fabrication tools for 6 inch pseudo-square industrial wafers. The novelty of our work includes optimization of every fabrication process step, e.g., texturization, emitter diffusion, emitter passivation and anti-reflection coating deposition, edge-isolation, screen printing and co-firing individually. These modifications include tuning of processing tools and processes, utility changes and inclusion of additional process steps. Beaker-based chemical processes, manual diffusion furnace, introduction of low temperature oxidation, low temperature silicon nitride deposition processes, plasma-edge isolation tool, single manual screen printer, single oven drying of metal pastes and co-firing using rapid thermal processing tools were used at our lab. For our cells, actual and active area efficiencies of 18.5 and 19% (measured under AM1.5G 1 Sun condition), respectively, were achieved.

Keywords

Limited laboratory space small-footprint processing equipment low-cost processing individually optimized processes high-cell efficiency 

Notes

Acknowledgements

We would like to acknowledge the efforts of Nimisha S, Aditya D, Divya P and other colleagues at NCPRE for their assistance in characterization and processing. This work was carried out at the National Centre for Photovoltaic Research and Education (funded by the Ministry of New and Renewable Energy, Government of India) under the project no. 16MNRE002 at IIT Bombay.

References

  1. 1.
    ITRPV 2017 Eighth edition www.itrpv.net/Reports/Downloads/
  2. 2.
    Basu P, Hameiri Z, Sarangi D, Cunnusamy J, Carmona E and Boreland M 2013 Sol. Energy Mater. Sol. Cells 117 412CrossRefGoogle Scholar
  3. 3.
    Basu P, Sarangi D, Shetty K and Boreland M 2013 Sol. Energy Mater. Sol. Cells 113 37CrossRefGoogle Scholar
  4. 4.
    Dastgheib-Shirazi A, Haverkamp H, Raabe B, Book F and Hahn G 2008 Proc. of 23rd European photovoltaic solar energy conference, p 1197Google Scholar
  5. 5.
    Duttagupta S, Lin F, Shetty K, Aberle A and Hoex B 2013 Prog. Phot.: Res. Appl. 21 760Google Scholar
  6. 6.
    Basu P, Sreejith K, Yadav T, Kottantharayil A and Sharma A 2018 Sol. Energy Mat. Sol. Cells 185 406CrossRefGoogle Scholar
  7. 7.
    Hoornstra J, Van Strien W, Lamers M, Tool K and Weeber A 2007 Proc. of 22nd European photovoltaic solar energy conference, p 1586Google Scholar
  8. 8.
    Giesecke J, Schubert M, Michl B, Schindler F and Warta W 2011 Sol. Energy Mater. Sol. Cells 95 1011CrossRefGoogle Scholar
  9. 9.
    Basu P, Law F, Vinodh S, Kumar A, Richter P, Bottari F et al 2015 Sol. Energy Mater. Sol. Cells 137 193Google Scholar
  10. 10.
    Wong J 2013 Proc. of 39th IEEE photovoltaic specialists conference p 933Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Prabir K Basu
    • 1
    • 2
    Email author
  • Sandeep Kumbhar
    • 1
  • K P Sreejith
    • 1
    • 3
  • Tarun S Yadav
    • 1
    • 3
  • Anil Kottantharayil
    • 1
    • 3
  • B M Arora
    • 1
  • K L Narasimhan
    • 1
  • Ashok K Sharma
    • 1
  1. 1.National Centre for Photovoltaic Research and Education (NCPRE)MumbaiIndia
  2. 2.Solar Energy Research Institute of India (SERIS)National University of SingaporeSingaporeSingapore
  3. 3.Department of Electrical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations