Effect on dielectric, structural and thermal behaviour of \(\hbox {CaCu}_{{3}}\hbox {Ti}_{{4}}\hbox {O}_{{12}}\) in a Nylon 11 matrix

  • R S Ernest RavindranEmail author
  • P Thomas
  • S Renganathan


This paper discusses the probability of obtaining high-dielectric permittivity from ceramic–polymer composites by mixing higher dielectric material, \(\hbox {CaCu}_{{3}}\hbox {Ti}_{{4}}\hbox {O}_{{12}}\) (CCTO) in a Nylon 11 matrix by the melt-mixing method. The volume percentage of addition of CCTO micro-particles was from 0 to 20 vol%. The dielectric, structural morphology and thermal properties of the composites were analysed using an impedance analyser, a scanning electron microscope, a differential scanning calorimeter and a thermogravimetric analyser, respectively. The permittivity of 50 vol% of the composite is 12, which is increased to that of virgin Nylon 11 of 5.8. Different theoretical models were employed to rationalize the dielectric behaviour of the composite and found to be accurate with that of the experimental data. The thermal behaviour of the composites was good after the addition of CCTO micro-particles into it. It provides the means to employ the ceramic–polymer composites at low temperature with less permittivity and loss.


Nylon 11 micro-CCTO particles dielectric properties and thermal behaviour 


  1. 1.
    Newnham R E 1986 Annu. Rev. Mater. Sci. 16 47Google Scholar
  2. 2.
    Gregorio R, Cestari M and Bernardino F E 1996 J. Mater. Sci. 31 2925Google Scholar
  3. 3.
    Chan H L W, Cheung M C and Choy C L 1999 Ferroelectrics 224 113Google Scholar
  4. 4.
    Dang Z M, Shen Y and Nan C W 2002 Appl. Phys. Lett. 81 4814Google Scholar
  5. 5.
    Arbatti M, Shan X and Cheng Z-Y 2007 Adv. Mater. 19 1369Google Scholar
  6. 6.
    Devaraju N G, Lee B I and Kim E S 2005 Microelectron. Eng. 82 71Google Scholar
  7. 7.
    Lee B W, Abothu I R and Raj P M 2006 Scr. Mater. 54 1231Google Scholar
  8. 8.
    Choi Seung-Hoon, Kim II-Doo, Hong Jae-Min, Park Ki-Hong and Oh Seong-Geun 2007 Mater. Lett. 61 2478Google Scholar
  9. 9.
    Kobayashi Y, Tanase T, Tabata T, Miwa T and Konno M 2008 J. Eur. Ceram. Soc. 28 117Google Scholar
  10. 10.
    Zhi-Min Dang, You-Qin Lin, Hai-Ping Xu, Chang-Yong Shi, Sheng-Tao Li and Jinbo Bai 2008 Adv. Funct. Mater. 18 1509Google Scholar
  11. 11.
    Wang F, Zhou D and Hu Y 2009 Phys. Status Solidi A 206 2632Google Scholar
  12. 12.
    Cheng Z-Y, Katiyar R S, Yao X and Guo A 1997 Phys. Rev. B: Condens. Matter Mater. Phys. 55 8165Google Scholar
  13. 13.
    Subramanian M A, Li D, Duan N, Reisner B A and Sleight A W 2000 J. Solid State Chem. 151 323Google Scholar
  14. 14.
    Arbatti M 2004 M. S. Thesis, Auburn UniversityGoogle Scholar
  15. 15.
    Deschanvres A, Raveau B and Tollemer F 1967 Bull. Soc. Chim. Fr. 4077Google Scholar
  16. 16.
    Thomas P, Dwarakanath K, Varma K B R and Kutty T R N 2009 J. Therm. Anal. Calorim. 95 267Google Scholar
  17. 17.
    Ramesh S and Wen L C 2010 Ionics 16 255Google Scholar
  18. 18.
    Manasi S and Fahim M 2012 Polym. Compos. 33 675Google Scholar
  19. 19.
    Thomas P, Ernest Ravindran R S and Varma K B R 2014 J. Therm. Anal. Calorim. 115 1311Google Scholar
  20. 20.
    Amaral F, Rubinger C, Henry F, Costa L C, Valente M A and Barros-Timmons A 2008 J. Non-Cryst. Solids 353 5321Google Scholar
  21. 21.
    Thomas P, Ernest Ravindran R S and Varma K B R 2014 Polym. Eng. Sci. 54 551Google Scholar
  22. 22.
    Nair S S, Ramesh C and Tashiro K 2006 Macromolecules 39 2841Google Scholar
  23. 23.
    Zhang Q, Mo Z, Zhang H, Liu S and Cheng S Z D 2001 Polymers 42 5543Google Scholar
  24. 24.
    Fornes T D and Paul D R 2004 Macromolecules 37 7698Google Scholar
  25. 25.
    Kim K G, Newman B A and Scheinbeim J I 1985 J. Polym. Sci. Polym. Phys. 23 2477Google Scholar
  26. 26.
    Cui X, Qing S and Yan D 2005 Eur. Polym. J. 41 3060Google Scholar
  27. 27.
    Wan J, Bu Z-Y, Li C, Fan H and Li B-G 2011 Thermochim. Acta 524 117Google Scholar
  28. 28.
    Thomas P, Ernest Ravindran R S and Varma K B R 2012 IEEE 10th ICPADM, Bangalore, IndiaGoogle Scholar
  29. 29.
    Ernest Ravindran R S, Thomas P and Renganathan S 2017 Polym. Compos. 38 927Google Scholar
  30. 30.
    Ernest Ravindran R S, Thomas P and Renganathan S 2017 Sci. Eng. Compos. Mater. 24 185Google Scholar
  31. 31.
    Yang W, Yu S, Sun R and Du R 2011 Acta Mater. 59 5593Google Scholar
  32. 32.
    Hussien B 2011 Eur. J. Sci. Res. 52 236Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ECEKLEF (Deemed to be University)Vaddeswaram, GunturIndia
  2. 2.Dielectric Materials DivisionCentral Power Research InstituteBangaloreIndia
  3. 3.Department of Biotechnology, A. C. Tech.Anna UniversityChennaiIndia

Personalised recommendations