Maleic anhydride film deposition through an active screen plasma system

  • Edson Guinter
  • Luis C Fontana
  • Daniela BeckerEmail author


The active screen plasma system has been extensively studied over the past few years, mainly for plasma nitriding purposes. This technique also provides possibilities of treating non-electrical conducting materials, such as polymeric ones, which is unattainable with a conventional DC plasma system. In this work, an active screen plasma setup for maleic anhydride (MA) film deposition on a glass substrate was used. The plasma working gas was a mixture of argon and MA vapour. Films obtained through conventional plasma discharge were compared with the active screen deposition process, in both DC and pulsed-mode plasma. The samples were characterized through Fourier-transform infrared spectroscopy and static contact angle between the film’s surface and droplets of distilled water. Film thickness measurements were performed through profilometry. Results showed that MA films obtained through the active screen system are thicker and more efficiently preserve the anhydride groups than those obtained from conventional plasma discharge.


Film deposition maleic anhydride active screen 



We are thankful for the financial resources provided by CAPES, by means of scholarships, by CNPq, through project Universal/445242/2014-0, and by FAPESC/UDESC/PAP.


  1. 1.
    Bogaerts A, Neytsa E, Gijbels R and van der Mullen J 2002 Spectrochim. Acta Part B 57 609CrossRefGoogle Scholar
  2. 2.
    Li C X 2010 Surf. Eng. 26 135CrossRefGoogle Scholar
  3. 3.
    Hamann S, Börner K, Burlacov I, Spies H-J and Röpcke J 2015 J. Phys. D: Appl. Phys. 48 345204CrossRefGoogle Scholar
  4. 4.
    Kaklamani G, Bowen J, Mehrban N, Dong H, Grover L M and Stamboulis A 2013 Appl. Surf. Sci. 273 787CrossRefGoogle Scholar
  5. 5.
    Trivedi B C and Culbertson B M 1982 Maleic anhydride (New York: Springer)CrossRefGoogle Scholar
  6. 6.
    Ryan M E, Hynes A M and Badyal J P S 1996 Chem. Mater. 18 37CrossRefGoogle Scholar
  7. 7.
    Schiller S, Hu J, Jenkins A T A, Timmons R B, Sanchez-Estrada F S et al 2002 Chem. Mater. 14 235CrossRefGoogle Scholar
  8. 8.
    Spadaro G, De Gregorio R, Galia A, Valenza A and Filardo G 2000 Polymer 41 3491CrossRefGoogle Scholar
  9. 9.
    Ismailov F A, Shokhodzhaev T, Kamalov S and Aikhodzhaev I 1973 Fibre Chem. 4 584CrossRefGoogle Scholar
  10. 10.
    Mishra G and McArthur S L 2010 Langmuir 26 9645CrossRefGoogle Scholar
  11. 11.
    Yan J, Hosoi K and Kuroda S 2014 Appl. Mech. Mater. 670 244CrossRefGoogle Scholar
  12. 12.
    Drews J, Launay H, Hansen C M, West K, Hvilsted S, Kingshott P et al 2008 Appl. Surf. Sci. 254 4720CrossRefGoogle Scholar
  13. 13.
    Jenkins A T A, Hu J, Wang Y Z, Schiller S, Foerch R and Knoll W 2000 Langmuir 16 6381CrossRefGoogle Scholar
  14. 14.
    Siffer F, Ponche A, Fioux P, Schultz J and Roucoules V 2005 Anal. Chim. Acta 539 289CrossRefGoogle Scholar
  15. 15.
    Richard A, Power supplies for pulsed plasma technologies: state-of-the-art and outlook,
  16. 16.
    Chapman B 1980 Glow discharges process: sputtering and plasma etching (New York: Wiley)Google Scholar
  17. 17.
    Kim D and Economou D J 2004 J. Appl. Phys. 95 3311CrossRefGoogle Scholar
  18. 18.
    da Silva P C S, Ramos M A R, Corat E J and Trava-Airoldi V J 2016 Mater. Res. 19 882CrossRefGoogle Scholar
  19. 19.
    Parker S F, Wilson C C, Tomkinson J, Keen D A, Shankland K et al 2001 J. Phys. Chem. A 105 3064CrossRefGoogle Scholar
  20. 20.
    Wood T J, Schofieldab W C E and Badyal J P S 2012 J. Mater. Chem. 22 7831CrossRefGoogle Scholar
  21. 21.
    Zhang W, Li G, Fang Y and Wang X 2007 J. Membr. Sci. 295 130CrossRefGoogle Scholar
  22. 22.
    Li Y, Pham J Q, Johnston K P and Green P F 2007 Langmuir 23 9785CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Centro de Ciências Tecnológicas-CCTUniversidade do Estado de Santa Catarina - UDESCJoinvilleBrazil

Personalised recommendations