Synthesis and thermophysical studies of polyanilines

  • K S Patil
  • P H Zope
  • U T Patil
  • P D Patil
  • R S Dubey
  • G R GuptaEmail author


Aniline was polymerized under different experimental conditions such as interfacial polymerization, rapid mixing in hydrochloric acid medium and classical bulk polymerization method using p-toluene sulphonic acid. The resulting polyanilines were characterized by infrared, X-ray diffraction, conductance and scanning electron microscopic analysis. The main emphasis of the paper is to study the thermal response of the synthesized polyanilines by thermogravimetric analysis and differential scanning calorimetry (DSC). The DSC data were utilized further to calculate the specific heat capacities of the synthesized polyanilines as a function of temperature.


Conducting polymers polyanilines specific heat capacity 



We gratefully thank Professor K J Patil, Ex. Professor, Shivaji University, Kolhapur for knowledge sharing and technical writing. The authors are also thankful to the management and Principal Dr K S Wani for the financial support of the project from Shram Sadhana Research Promotion Scheme No. COET/SSRPS/1626/019/13 dated 6 Sept, 2013 started in SSBTs COET Bambhori, Jalgaon (M.S.), India to increase the research activity in the institute. Also many thanks to the North Maharashtra University, Jalgaon and Shivaji University, Kolhapur for providing characterization facility.


  1. 1.
    Stejskal J and Gilbert R G 2002 Pure Appl. Chem. 74 857CrossRefGoogle Scholar
  2. 2.
    Chiang J C and MacDiarmid A G 1986 Synth. Met. 13 193CrossRefGoogle Scholar
  3. 3.
    MacDiarmid A G, Yang L S, Huang W S and Humphrey B D 1987 Synth. Met. 18 393CrossRefGoogle Scholar
  4. 4.
    McCall R P, Ginder J M, Leng J M, Coplin K A, Ye H J, Epstein A J et al 1991 Synth. Met41 1329CrossRefGoogle Scholar
  5. 5.
    Trivedi D C and Dhawan S K 1993 Synth. Met59 267CrossRefGoogle Scholar
  6. 6.
    Makeiff D A and Huber T 2006 Synth. Met156 497CrossRefGoogle Scholar
  7. 7.
    Dutta D, Sarma T K, Chowdhury D and Chattopadhyay A 2005 J. Colloid Interface Sci283 153CrossRefGoogle Scholar
  8. 8.
    Drelinkiewicz A, Waksmundzka-Gora A, Sobczak J W and Stejskal J 2007 Appl. Catal. A: Gen. 333 219CrossRefGoogle Scholar
  9. 9.
    Zhao C, Xing S, Yu Y, Zhang W and Wang C 2007 Microelectron. J. 38 316CrossRefGoogle Scholar
  10. 10.
    Willner I, Willner B and Katz E 2007 Bioelectrochemistry 70 2CrossRefGoogle Scholar
  11. 11.
    Blinova N V, Stejskal J, Trchova M, Ciric-Marjanovic G and Sapurina I 2007 J. Phys. Chem. B 111 2440CrossRefGoogle Scholar
  12. 12.
    Sun L J, Liu X X, Lau K K T, Chen L and Gu W M 2008 Electrochim. Acta53 3036CrossRefGoogle Scholar
  13. 13.
    Bessiere A, Duhamel C, Badot J C, Lucas V and Certiat M C 2004 Electrochim. Acta 49 2051CrossRefGoogle Scholar
  14. 14.
    Halvorson C, Cao Y, Moses D and Heeger A J 1993 Synth. Met. 57 3941CrossRefGoogle Scholar
  15. 15.
    Wang H L, MacDiarmid A G, Wang Y Z, Gebier D D and Epstein A J 1996 Synth. Met. 78 33CrossRefGoogle Scholar
  16. 16.
    Kaneto K, Kaneko M, Min Y and MacDiarmid A G 1995 Synth. Met. 71 2211CrossRefGoogle Scholar
  17. 17.
    Soto-Oviedo M A, Araujo O A, Faez R, Rezende M C and DePaoli M A 2006 Synth. Met. 156 1249CrossRefGoogle Scholar
  18. 18.
    Kalendova A, Vesely D and Stejskal J 2008 Progr. Org. Coat. 62 105CrossRefGoogle Scholar
  19. 19.
    Stejskal J, Kratochvıl P and Jenkins A D 1996 Polymer 37 367CrossRefGoogle Scholar
  20. 20.
    Christina O B, Xinwei H, Wyatt N and Richard B K 2017 Chem. Soc. Rev. 46 1510CrossRefGoogle Scholar
  21. 21.
    Ali E 2010 Nanostructured conductive polymers (Chichester, UK: John Wiley & Sons Ltd.) p 19Google Scholar
  22. 22.
    Hari Singh N 2001 Handbook of advanced electronic and photonic materials and devices (London, UK: Academic Press) p 1Google Scholar
  23. 23.
    Haines P J 1995 Thermal methods of analysis (London, UK: Springer Science)Google Scholar
  24. 24.
    Shirsath N B, Gupta G R, Gite V V and Meshram J S 2017 Bull. Mater. Sci. 41 63CrossRefGoogle Scholar
  25. 25.
    Zulkhairi Z, Nurul F A H, Mubaraq H V S, Shafiqul Islam A K M, Uda H and Ahmad M N 2015 J. Nanomater. 2015 218204Google Scholar
  26. 26.
    Jiahua Z, Suying W, Lei Z, Yuanbing M, Jongeun R, Neel H et al 2011 J. Mater. Chem. 21 3952CrossRefGoogle Scholar
  27. 27.
    Arora M and Gupta S K 2008 ICOPVS Google Scholar
  28. 28.
    Saini P, Arora M, Arya S K and Tawale J S 2014 Indian J. Pure Appl. Phys. 52 175Google Scholar
  29. 29.
    Agrawalla R K, Paul S, Sahoo P K, Chakraborty A K and Mitra A K 2015 J. Appl. Polym. Sci. 132 41692Google Scholar
  30. 30.
    Agrawalla R K, Meriga V, Paul R, Chakraborty A K and Mitra A K 2016 EXPRESS Polym. Lett. 9 780CrossRefGoogle Scholar
  31. 31.
    Venkanna M, Sreeramulu V, Sivaprakash S, Caroline C and Dhanak V R 2015 J. Appl. Polym. Sci. 132 42766Google Scholar
  32. 32.
    Burns J A and Verall R E 1974 Thermochim. Acta. 9 277CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Preeti A T, Yadav S M and Gupta G R 2014 Polym. Bull. 71 1349CrossRefGoogle Scholar
  35. 35.
    Kumar D and Chandra R 2001 Indian J. Eng. Mater. Sci8 209Google Scholar
  36. 36.
    Jiaxing H and Richard B K 2004 J. Am. Chem. Soc. 126 851CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • K S Patil
    • 1
  • P H Zope
    • 1
  • U T Patil
    • 1
  • P D Patil
    • 2
  • R S Dubey
    • 3
  • G R Gupta
    • 4
    Email author
  1. 1.SSTs College of Engineering and TechnologyBambhori, JalgaonIndia
  2. 2.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  3. 3.Swarnandhra College of Engineering and TechnologyNarsapurIndia
  4. 4.Institute of Chemical TechnologyMatunga, MumbaiIndia

Personalised recommendations