Advertisement

Intercalation of \(\hbox {LDH NO}_{{3}}\) with short-chain intercalants

  • Mostofa Shamim
  • Kausik DanaEmail author
Article
  • 7 Downloads

Abstract

Intercalation behaviour of layered-double hydroxide (LDH) with short-chain intercalants (\({-}(\hbox {CH}_{2})_{n}{-}, n<9\)) is significantly difficult and less reported than with long-chain intercalants. The present study reports an efficient way to intercalate LDH with short-chain intercalants (\(n=4\) and 8) and investigates the effect of layer charge on intercalation behaviour of LDHs. Short-chain anionic surfactants were successfully intercalated with synthetic LDHs \([\hbox {Zn}_{1-x}\hbox {Al}_{x}(\hbox {OH})_{2}\hbox {NO}_{{3}}{\cdot } n\hbox {H}_{2}\hbox {O},\,x=0.2{-}0.33]\) by an ion-exchange intercalation technique in a slightly acidic medium (\(\hbox {pH}=5.4\)). The adverse effect of a carbonate anion was avoided by performing the ion-exchange intercalation in slightly acidic medium (\(\hbox {pH}=5.4\)). It was found that basal spacing \((d_{003})\) and experimental organic loading of intercalated LDH (O-LDH) increase monotonically with increasing anion-exchange capacity of LDH and intercalant chain length. The evolution of intercalated LDH (O-LDH) structures with increasing intercalant chain length and layered charge has been deciphered by correlating basal spacing of O-LDHs (by X-ray powder diffraction), organic loading data (by thermogravimetric analysis) and molecular conformation of O-LDHs (by Fourier-transform infrared spectroscopy) within the LDH gallery. Successful intercalation of LDH with these short-chain intercalants in slightly acidic medium has not been reported previously.

Keywords

LDH intercalation short-chain intercalants anion-exchange capacity organic loading 

Notes

Acknowledgements

The research work was funded by CSIR under GLASSFIB project and one of the authors (MS) acknowledges the ‘SRF-GATE’ research fellowship granted to him by CSIR, New Delhi, India.

Supplementary material

12034_2018_1704_MOESM1_ESM.docx (283 kb)
Supplementary material 1 (docx 282 KB)

References

  1. 1.
    Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K and Kaneda K 2004 J. Am. Chem. Soc. 126 5662CrossRefGoogle Scholar
  2. 2.
    Zou X, Goswami A and Asefa T 2013 J. Am. Chem. Soc. 135 17242CrossRefGoogle Scholar
  3. 3.
    Shu Y, Yin P, Wang J, Liang B, Wang H and Guo L 2014 Ind. Eng. Chem. Res. 53 3820CrossRefGoogle Scholar
  4. 4.
    Chakraborty C, Dana K and Malik S 2011 J. Phys. Chem. C 115 1996CrossRefGoogle Scholar
  5. 5.
    Bi B, Xu L, Xu B B and Liu X Z 2011 Appl. Clay Sci. 54 242CrossRefGoogle Scholar
  6. 6.
    Starukh G, Rozovik O and Oranska O 2016 Nanoscale Res. Lett. 11 10CrossRefGoogle Scholar
  7. 7.
    Prasanna S R, Rao A P and Kamath P V 2006 J. Colloid Interface Sci. 304 292CrossRefGoogle Scholar
  8. 8.
    Radha A K, Kamath P V and Shivakumara C 2007 J. Phys. Chem. B 111 3411CrossRefGoogle Scholar
  9. 9.
    Miyata S and Kumara T 1973 Chem. Lett. 2 843CrossRefGoogle Scholar
  10. 10.
    Costa F R, Leuteritz A, Wagenknecht U, Jehnichen D, Haussler L and Heinrich G 2008 Appl. Clay Sci. 38 153CrossRefGoogle Scholar
  11. 11.
    Crepaldi E L, Pavan P C and Valim J B 1999 Chem. Commun. 2 155CrossRefGoogle Scholar
  12. 12.
    Ayala-Luis K B, Koch C B and Hansen H C B 2010 Appl. Clay Sci. 48 334CrossRefGoogle Scholar
  13. 13.
    Costa F R, Leuteritz A, Wagenknecht U, Landwehr M A D, Jehnichen D, Haeussler L et al 2009 Appl. Clay Sci. 44 7CrossRefGoogle Scholar
  14. 14.
    Crepaldi E L, Pavan P C, Tronto J and Valim J B 2002 J. Colloid Interface Sci. 248 429CrossRefGoogle Scholar
  15. 15.
    Pavan P C, Crepaldi E L and Valim J B 2000 J. Colloid Interface Sci. 229 346CrossRefGoogle Scholar
  16. 16.
    Refait P, Drissi S H, Pytkiewicz J and Genin J M R 1997 Corros. Sci. 39 1699CrossRefGoogle Scholar
  17. 17.
    Zhang H, Zhang F Z, Ren L L, Evans D G and Duan X 2004 Mater. Chem. Phys. 85 207CrossRefGoogle Scholar
  18. 18.
    Pavan P C, Gomes G D and Valim J B 1998 Microporous Mesoporous Mater. 21 659CrossRefGoogle Scholar
  19. 19.
    Prevot V, Forano C and Besse J P 1998 Inorg. Chem. 37 4293CrossRefGoogle Scholar
  20. 20.
    Pavan P C, Crepaldi E L, Gomes G D and Valim J B 1999 Colloids Surf. A  154 399CrossRefGoogle Scholar
  21. 21.
    Antonyraj C A, Koilraj P and Kannan S 2010 Chem. Commun. 46 1902CrossRefGoogle Scholar
  22. 22.
    Shamim M and Dana K 2016 Thermochim. Acta 632 64CrossRefGoogle Scholar
  23. 23.
    Ganguly S, Dana K, Mukhopadhyay T K and Ghatak S 2011 Clays Clay Miner. 59 13CrossRefGoogle Scholar
  24. 24.
    Moyo L, Nhlapo N and Focke W W 2008 J. Mater. Sci. 43 6144CrossRefGoogle Scholar
  25. 25.
    Nejati K and Rezvani Z 2012 J. Exp. Nanosci. 7 412CrossRefGoogle Scholar
  26. 26.
    Ogawa M and Hiramine M 2014 Cryst. Growth Des. 14 1516CrossRefGoogle Scholar
  27. 27.
    Xing F-F, Ni Z-M, Wang P, Pan G-X, Xia S-J and Wang L-G 2007 Acta Chim. Sin. 65 2738Google Scholar
  28. 28.
    Choy J-H, Kwak S-Y, Jeong Y-J and Park J-S 2000 Angew. Chem. Int. Ed. 39 4041CrossRefGoogle Scholar
  29. 29.
    Nalawade P, Aware B, Kadam V J and Hirlekar R S 2009 J. Sci. Ind. Res. 68 267Google Scholar
  30. 30.
    Anbarasan R, Lee W D and Im S S 2005 Bull. Mater. Sci. 28 145CrossRefGoogle Scholar
  31. 31.
    Barahuie F, Hussein M Z, Fakurazi S and Zainal Z 2014 Int. J. Mol. Sci. 15 7750CrossRefGoogle Scholar
  32. 32.
    Li S, Lu J, Xu J, Dang S, Evans D G and Duan X 2010 J. Mater. Chem. 20 9718CrossRefGoogle Scholar
  33. 33.
    Williams G R, Dunbar T G, Beer A J, Fogg A M and O’Hare D 2006 J. Mater. Chem. 16 1222CrossRefGoogle Scholar
  34. 34.
    Ruan X, Huang S, Chen H and Qian G 2013 Appl. Clay Sci. 72 96CrossRefGoogle Scholar
  35. 35.
    Ganguly S, Dana K, Mukhopadhyay T K and Ghatak S 2011 J. Therm. Anal. Calorim. 105 199CrossRefGoogle Scholar
  36. 36.
    Bai Z M, Wang Z Y, Zhang T G, Fu F and Yang N 2013 Appl. Clay Sci. 75–76 22Google Scholar
  37. 37.
    Clearfield A, Kieke M, Kwan J, Colon J L and Wang R C 1991 J. Inclusion Phenom. Mol. Recognit. Chem. 11 361CrossRefGoogle Scholar
  38. 38.
    Sarkar M, Dana K and Ghatak S 2011 J. Mol. Struct. 1005 161Google Scholar
  39. 39.
    Jankovič L, Madejová J, Komadel P, Jochec-Mošková D and Chodák I 2011 Appl. Clay Sci. 51 438CrossRefGoogle Scholar
  40. 40.
    Wei M, Pu M, Guo J, Han J B, Li F, He J et al 2008 Chem. Mater. 20 5169CrossRefGoogle Scholar
  41. 41.
    Babakhani S, Talib Z A, Hussein M Z and Ahmed A A A 2014 Int. J. Spectrosc. 2014 1CrossRefGoogle Scholar
  42. 42.
    Lagaly G 1976 Angew. Chem. 15 575CrossRefGoogle Scholar
  43. 43.
    Meyn M, Beneke K and Lagaly G 1990 Inorg. Chem. 29 5201CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Refractory and Traditional Ceramics DivisionCSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations