Haemoglobin/polyindole composites: the novel material for electrochemical supercapacitors

  • K KhatiEmail author
  • I Joshi
  • A Bisht
  • M G H Zaidi


Conducting polymers have recently been employed with metal derivative macromolecules that have led to great improvement in the field of supercapacitor materials. The current work reports on the synthesis of a novel class of haemoglobin/polyindole composites (HPCs) through doping of haemoglobin (Hb) into a polyindole (PIN) matrix. HPCs with enhanced electrocapacitive performance were prepared through a cationic surfactant-assisted dilute solution polymerization of indole (IN) in the presence of Hb at various concentrations ranging from 10 to 30% (w/w) and ferric chloride (\(\hbox {FeCl}_{3}\)) as an oxidant. The HPCs were characterized through Fourier transform infrared spectra, scanning electron microscopy and simultaneous thermogravimetric analysis. Electrochemical capacitance (\(C_{\mathrm{s}}\), \(\hbox {F g}^{-1}\)) of graphite-based electrodes fabricated from HPCs over stainless steel in the presence of sulphonated polysulphone as a binder has been investigated in KOH solution (1.0 M) with reference to Ag/AgCl at a scan rate (\(\hbox {V s}^{-1}\)) ranging from 0.001 to 0.2. HPCs with 30% (w/w) of Hb have shown the highest \(C_{\mathrm{s}}\) of 294.00 as compared with 112.00 for pure PIN at a scan rate of \(0.001 \hbox { V s}^{-1}\). Successive scans of HPC electrodes show a capacitive decline of \({\sim }2\%\) during the first 1000 cycles at a scan rate of \(0.1 \hbox { V s}^{-1}\) in KOH (1.0 M), which indicates the appreciable electrochemical cyclic stability of the HPCs over PIN. Thus, the fabricated HPCs may serve as potential electrode material for development of electrochemical supercapacitors.


Polyindole haemoglobin electrochemical capacitance supercapacitors 



The financial assistance granted by CSIR-UGC NET JRF and SRF fellowship are acknowledged.

Supplementary material

12034_2018_1700_MOESM1_ESM.pdf (424 kb)
Supplementary material 1 (pdf 424 KB)


  1. 1.
    Chen S M, Ramachandran R, Mani V and Saraswathi R 2014 Int. J. Electrochem. Sci. 9 4072Google Scholar
  2. 2.
    Ramya R, Sivasubramanian R and Sangaranarayanan M V 2013 Electrochem. Acta 101 109CrossRefGoogle Scholar
  3. 3.
    Wang G, Zhang L and Zhang J A 2012 Chem. Soc. Rev. 41 797CrossRefGoogle Scholar
  4. 4.
    Ma X, Zhou W, Mo D, Hou J and Xu J 2015 Electrochim. Acta 176 1302CrossRefGoogle Scholar
  5. 5.
    Nie G, Han X, Hou J and Zhang S 2007 J. Electroanal. Chem. 604 125CrossRefGoogle Scholar
  6. 6.
    Koiry S P, Saxena V, Sutar D, Bhattacharya S, Aswal D K, Gupta S K et al 2007 J. Appl. Polym. Sci. 103 595CrossRefGoogle Scholar
  7. 7.
    Deng H, Lin L, Ji M, Zhang S, Yang M and Fu Q 2014 Prog. Polym. Sci. 39 627CrossRefGoogle Scholar
  8. 8.
    Cosnier S 1999 Biosens. Bioelectron. 14 443CrossRefGoogle Scholar
  9. 9.
    Trung V Q and Huyen D N 2009 J. Phys. Conf. Ser. 87 012058CrossRefGoogle Scholar
  10. 10.
    Rajasudha G, Shankar H, Thangadurai P, Boukos N, Narayanan V and Stephen A 2010 Ionics 16 839CrossRefGoogle Scholar
  11. 11.
    Rajasudha G, Nancy A P, Paramasivam T, Boukos N, Narayanan V and Stephen A 2011 Int. J. Polym. Mater. 60 877CrossRefGoogle Scholar
  12. 12.
    Rajasudha G, Jayan L M, Thangadurai P, Boukos N, Narayanan V and Stephen A 2012 Polym. Bull. 68 181CrossRefGoogle Scholar
  13. 13.
    Rajasudha G, Narayanan V and Stephen A 2012 Adv. Mater. Res. 584 536CrossRefGoogle Scholar
  14. 14.
    Ganesan R, Dhinasekaran D, Paramasivam T, Boukos N, Vengidusamy N and Arumainathan S 2012 Polym. Plast. Technol. Eng. 51 225CrossRefGoogle Scholar
  15. 15.
    Rejani P and Beena B 2013 Ind. J. Adv. Chem. Sci. 2 95Google Scholar
  16. 16.
    Raj R P, Ragupathy P and Mohan S 2015 J. Mater. Chem. A 3 24338CrossRefGoogle Scholar
  17. 17.
    Rouhi M, Lakouraj M M, Baghayeri M and Hasantabar V 2016 Int. J. Polym. Mater. Polym. Biomater. 66 12CrossRefGoogle Scholar
  18. 18.
    Khairy M and El-Safty S A 2014 Chem. Commun. 50 1356CrossRefGoogle Scholar
  19. 19.
    Bolat G, Kuralay F and Abaci S 2012 Chem. Sens. 2 1Google Scholar
  20. 20.
    Mudila H, Rana S, Zaidi M G H and Alam S 2014 Fuller. Nanotub. Carbon Nanostruct. 23 20CrossRefGoogle Scholar
  21. 21.
    Unnikrishnan L, Madamana P, Mohanty S and Nayak S K 2012 Polym. Plast. Technol. Eng. 51 568CrossRefGoogle Scholar
  22. 22.
    Aboul-Enein Y, Bunaciu A A and Fleschin S 2014 GU J. Sci. 27 637Google Scholar
  23. 23.
    Kong J and Yu S 2007 Acta Biochim. Biophys. Sin. 39 549CrossRefGoogle Scholar
  24. 24.
    Gupta B, Chauhan D S and Prakash R 2010 Mater. Chem. Phys. 120 625CrossRefGoogle Scholar
  25. 25.
    Soylu O, Uzun S and Can M 2011 Colloid Polym. Sci. 289 903CrossRefGoogle Scholar
  26. 26.
    Cai Z and Yang G 2010 Synth. Method 160 1902CrossRefGoogle Scholar
  27. 27.
    Zhijiang C S, Xingjuan and Fan Y 2013 J. Power Sources 227 53Google Scholar
  28. 28.
    Wadatkar N S and Waghuley S A 2015 Egypt. J. Basic Appl. Sci. 2 19CrossRefGoogle Scholar
  29. 29.
    Baum J, Jones R, Manning T, Nienow J and Phillips D 2012 Acta Pharm. 62 201CrossRefGoogle Scholar
  30. 30.
    Dessy A, Piras A M, Schirà G, Levantino M, Cupane A and Chiellini F 2011 Eur. J. Pharm. Sci. 43 57CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Li C M, Li J, Cui X and Gervasio D 2007 J. Phys. Chem. C 111 11216CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryG.B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations