Advertisement

Sintering behaviour and interfacial toughness of HAp/TCP coatings on HAp/Ti nanocomposite substrates

  • M J Rastgoo
  • M RazaviEmail author
  • E Salahi
  • I Mobasherpour
Article
  • 9 Downloads

Abstract

Spark plasma sintering (SPS) is used in rapid compaction of materials in order to achieve higher compact density and in improving mechanical strength and toughness. However, implants produced by SPS do not have preferred positions for formation of a bone-like apatite layer on their surface due to their high density. Biphasic-calcium phosphate (BCP) ceramics consisting of stable hydroxyapatite (HAp) and soluble tri-calcium phosphate (TCP) are developed to achieve a controllable biodegradation rate and biological stability by adjusting the TCP/HAp ratio. The primary goal of this study is to improve mechanical properties and bioactivity of implants. HAp/20 wt% Ti nanocomposite powders were chosen for bulk, and also HAp/TCP nanocomposite powders were chosen for coatings with weight percentages of 75/25, 50/50 and 25/75, respectively. The samples were sintered for 5 min at a compaction pressure of 30 MPa and at different temperatures of 650 and \(750^{\circ }\hbox {C}\). The phase changes of the coatings are studied by X-ray diffraction. Mechanical properties such as interfacial toughness are investigated. The results show that amount of TCP increases with increasing sintering temperature in HAp/75 wt% TCP coating, however no significant change was observed in amount of TCP in HAp/25 wt% TCP coating. Also, the maximum value of interfacial toughness is equal to \(34\, \hbox {MPa mm}^{1/2}\), which was obtained for 75 wt% HAp–25 wt% TCP coating sintered at \(750^{\circ }\hbox {C}\).

Keywords

Hydroxyapatite–titanium nano-composite SPS mechanical properties 

References

  1. 1.
    Hench L L and Wilson J 1993 An introduction to bioceramics (Singapore: World Scientific Publishing Co.) i–XGoogle Scholar
  2. 2.
    Kwon S H, Jun Y K, Hong S H, Lee I S, Kim H E and Won Y Y 2002 J. Am. Ceram. Soc. 85 3129CrossRefGoogle Scholar
  3. 3.
    Yang X and Wang Z 1998 J. Mater. Chem. 8 2233CrossRefGoogle Scholar
  4. 4.
    Sun L, Berndt C C, Gross K A and Kucuk A 2001 J. Biomed. Mater. Res. 58 570CrossRefGoogle Scholar
  5. 5.
    Hahn B, Park D, Choi J, Ryu J, Yoon W and Lee B 2009 J. Am. Ceram. Soc. 92 793CrossRefGoogle Scholar
  6. 6.
    Liu D M, Troczynski T and Tseng W J 2001 Biomaterials 22 1721CrossRefGoogle Scholar
  7. 7.
    Dorozhkin S V 2012 Acta Biomater. 8 963CrossRefGoogle Scholar
  8. 8.
    Marot G, Lesage J, Démarécaux P, Hadad M, Siegmann S and Staia M H 2006 Surf. Coat. Technol. 201 2080CrossRefGoogle Scholar
  9. 9.
    ASTM C633-79 2001 Standard test method for adhesion or cohesion strength of thermal spray coatings (West. Conshohocken, PA, USA: ASTM)Google Scholar
  10. 10.
    Tsui Y C, Doyle C and Clyne T W 1998 Biomaterials 19 2015CrossRefGoogle Scholar
  11. 11.
    Nusair Khan A, Lu J and Liao H 2003 Mater. Sci. Eng. A 359 129CrossRefGoogle Scholar
  12. 12.
    Sadeghi-Fadaki S A, Zangeneh-Madar K and Valefi Z 2010 Surf. Coat. Technol. 204 2136CrossRefGoogle Scholar
  13. 13.
    Mohammadi Z, Ziaei-Moayyed A A and Sheikh-Mehdi Mesgar A 2007 Appl. Surf. Sci. 253 4960CrossRefGoogle Scholar
  14. 14.
    Rastgoo M J, Razavi M, SalahiI E and Mobasherpour I 2017 J. Aust. Ceram. Soc. 53 1CrossRefGoogle Scholar
  15. 15.
    Evans A G and Charles E A 1976 Am. Ceram. Soc. 59 371CrossRefGoogle Scholar
  16. 16.
    Lugscheider E, Bobzin K, Barwulf S and Etzkorn A 2001 Surf. Coat. Technol. 138 9CrossRefGoogle Scholar
  17. 17.
    Barinow S M, Rau J V, Nunziante Cesaro S, Ďurišin J, Fadeeva I V, Ferro D et al 2006 J. Mater. Sci. Mater. Med. 17 597Google Scholar
  18. 18.
    Qian J, Kang Y, Zhang W and Li Z 2008 J. Mater. Sci. Mater. Med. 19 3373CrossRefGoogle Scholar
  19. 19.
    Pramanik S, Agarwal A K, Rai K N and Garg A 2007 Ceram. Int. 33 419CrossRefGoogle Scholar
  20. 20.
    Meejoo S, Maneeprakorn W and Winotai P 2006 Thermochim. Acta 447 115CrossRefGoogle Scholar
  21. 21.
    Jillavenkatesa A and Condrate R A 1998 Spectrosc. Lett. 31 1619CrossRefGoogle Scholar
  22. 22.
    Salahi E and Heinrich J G 2003 Br. Ceram. Trans. 102 79CrossRefGoogle Scholar
  23. 23.
    Kivrak N and Tas A C 1998 J. Am. Ceram. Soc. 81 2245CrossRefGoogle Scholar
  24. 24.
    Skorokhod V V, Solonin S M, Dubok V A, Kolomiets L L, Permyakova T V and Shinkaruk A V 2010 Powder Metall. Met. Ceram. 49 324CrossRefGoogle Scholar
  25. 25.
    Mellali M, Fauchais P and Grimaud A 1996 Surf. Coat. Technol. 81 275CrossRefGoogle Scholar
  26. 26.
    Singh R K, Gilbert D R, Fitz-Gerald J, Harkness S and Lee D J 1996 Science 272 393CrossRefGoogle Scholar
  27. 27.
    Jarcho M, Bolen C H, Thomas M B, Bobick J, Kay J F and Doremus T H 1976 J. Mater. Sci. 11 2027CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Materials and Energy Research Center (MERC)TehranIran

Personalised recommendations